Additional File 1 # Pre-existing health conditions and severe COVID-19 outcomes: an umbrella review approach and meta-analysis of global evidence Marina Treskova-Schwarzbach, Laura Haas, Sarah Reda, Antonia Pilic, Anna Borodova, Kasra Karimi, Judith Koch, Teresa Nygren, Stefan Scholz, Viktoria Schönfeld, Sabine Vygen-Bonnet, Ole Wichmann, Thomas Harder Robert Koch Institute, Immunisation Unit, 13353 Berlin, Germany ## Contents | 1. | Methods | 4 | |------|---|----| | 1.1. | Search strategy | 4 | | 1.2. | Study selection | 4 | | 1.3. | Data extraction from systematic literature reviews | 5 | | 1.4. | Evaluation with AMSTAR 2 | 5 | | 1.5. | Data extraction from primary studies | 5 | | 2. | Results | 5 | | 2.1. | Overview of included reviews and primary studies | 5 | | | Figure 1. Selection of systematic reviews | 6 | | | Figure 2. Selection of primary studies | 7 | | | Table 1 Overview of included systematic reviews (n=120). | 8 | | | Figure 3. Overview of included systematic reviews (SRs). | 17 | | | Table 2 Results of quality evaluation of the included systematic reviews | 18 | | | Table 3 Overview of included primary studies (n=160) | 22 | | 2.2. | Summary of the studies based on the general population | 47 | | | Table 4 Overview of the studies which report community-based estimates (n=9) | 48 | | 2.3. | Definitions of pre-existing conditions | 51 | | 2.4. | List of estimates excluded from reporting | 57 | | 2.5. | Results of the meta-analyses | 58 | | | Table 5. 1 Risk of hospitalisation in persons with liver and metabolic diseases: meta-analysis and confidence in the estimate (GRADE) | 58 | | | Table 5. 2 Risk of hospitalisation in persons with respiratory diseases: meta-analysis and confidence in the estimate (GRADE) | | | | Table 5. 3 Risk of hospitalisation in persons with circulatory diseases: meta-analysis and confidence in the estimate (GRADE) | | | | Table 5. 4 Risk of hospitalisation in persons with overweight, obesity or underweight: meta-analysand confidence in the estimate (GRADE) | | | | Table 5. 5 Risk of hospitalisation in persons with immunodeficiency: meta-analysis and confidence the estimate (GRADE) | | | | Table 5. 6 Risk of hospitalisation in persons with neurological diseases or mental health disorders: meta-analysis and confidence in the estimate (GRADE) | | | | Table 5. 7 Risk of hospitalisation in persons with oncological diseases: meta-analysis and confider in the estimate (GRADE) | | | | Table 6. 1 Risk of death (in-hospital mortality) in persons with liver and metabolic diseases: meta analysis and confidence in the estimate (GRADE) | | | Table 6. 2 Risk of death (in-hospital mortality) in persons with respiratory diseases: meta-analysis and confidence in the estimate (GRADE) | |---| | Table 6. 3 Risk of death (in-hospital mortality) in persons with circulatory diseases: meta-analysis and confidence in the estimate (GRADE) | | Table 6. 4 Risk of death (in-hospital mortality) in persons with overweight, obesity or underweight: meta-analysis and confidence in the estimate (GRADE) | | Table 6. 5 Risk of death (in-hospital mortality) in persons with immunodeficiency: meta-analysis and confidence in the estimate (GRADE) | | Table 6. 6 Risk of death (in-hospital mortality) in persons with neurological diseases or mental health disorders: meta-analysis and confidence in the estimate (GRADE) | | Table 6. 7 Risk of death (in-hospital mortality) in persons with oncological diseases: meta-analysis and confidence in the estimate (GRADE) | | Table 7. 1 Risk of death (case mortality) in persons with liver and metabolic diseases: meta-analysis and confidence in the estimate (GRADE) | | Table 7. 2 Risk of death (case mortality) in persons with respiratory diseases: meta-analysis and confidence in the estimate (GRADE) | | Table 7. 3 Risk of death (case mortality) in persons with circulatory diseases: meta-analysis and confidence in the estimate (GRADE) | | Table 7. 4 Risk of death (case mortality) in persons with overweight, obesity or underweight: meta-analysis and confidence in the estimate (GRADE) | | Table 7. 5 Risk of death (case mortality) in persons with immunodeficiency: meta-analysis and confidence in the estimate (GRADE) | | Table 7. 6 Risk of death (case mortality) in persons with neurological diseases or mental health disorders: meta-analysis and confidence in the estimate (GRADE) | | Table 7. 7 Risk of death (case mortality) in persons with oncological diseases: meta-analysis and confidence in the estimate (GRADE) | | Table 8. 1 Risk of ICU admission in persons with liver and metabolic diseases: meta-analysis and confidence in the estimate (GRADE) | | Table 8. 2 Risk of ICU admission in persons with respiratory diseases: meta-analysis and confidence in the estimate (GRADE) | | Table 8. 3 Risk of ICU admission in persons with circulatory diseases: meta-analysis and confidence in the estimate (GRADE) | | Table 8. 4 Risk of ICU admission in persons with overweight, obesity or underweight: meta-analysis and confidence in the estimate (GRADE) | | Table 8. 5 Risk of ICU admission in persons with immunodeficiency: meta-analysis and confidence in the estimate (GRADE) | | Table 8. 6 Risk of ICU admission in persons with neurological diseases or mental health disorders: meta-analysis and confidence in the estimate (GRADE) | | Table 8. 7 Risk of ICU admission in persons with oncological diseases: meta-analysis and confidence in the estimate (GRADE) | | Table 9. 1 Risk of intubation in persons with liver and metabolic diseases: meta-analysis and confidence in the estimate (GRADE) | | Table 9. 2 Risk of intubation in persons with respiratory diseases: meta-analysis and confidence in the estimate (GRADE) | | Table 9. 3 Risk of intubation in persons with circulatory diseases: meta-analysis and confidence in the estimate (GRADE) | | Table 9. 4 Risk of intubation in persons with overweight, obesity or underweight: meta-analysis and confidence in the estimate (GRADE) | | Table 9. 5 Risk of intubation in persons with immunodeficiency: meta-analysis and confidence in the estimate (GRADE) | | | Table 9. 6 Risk of intubation in persons with neurological diseases or mental health disorders: meta analysis and confidence in the estimate (GRADE) | | |-------|---|------| | | Table 9. 7 Risk of intubation in persons with oncological diseases: meta-analysis and confidence in the estimate (GRADE) | | | | Figure 4. Ranges of the estimates with considerable between-study heterogeneity for respiratory an liver and metabolic diseases | | | | Figure 5. Ranges of the estimates with considerable between-study heterogeneity for circulatory diseases, overweight, obesity, and underweight | . 84 | | | Figure 6. Ranges of the estimates with considerable between-study heterogeneity for immunodeficiency, oncological disease, neurological and mental health disorders | . 85 | | 2.6. | Estimated associations supported by high quality of evidence | . 86 | | | Table 10 Estimated associations supported by high quality of evidence (GRADE) presented for eac pre-existing condition and outcome across the WHO-regions | | | 2.7. | Age-stratified estimates | . 89 | | | Table 11 Age-stratified estimates extracted from single studies (as reported by primary studies) | . 89 | | 2.8. | Summary of evidence for specific population groups | . 94 | | 2.9. | Risk of bias evaluation | . 95 | | | Table 12 Results of risk of bias evaluation with the Newcastle-Ottawa Scale (NOS) (n=17) | . 95 | | 2.10. | Systematic reviews excluded after eligibility assessment | 101 | | 2.11. | Excluded primary studies | 102 | | | References | 109 | 3. ## 1. Methods #### 1.1. Search strategy ## Search Syntax PubMed 1: ("Severe Acute Respiratory Syndrome Coronavirus 2" [Supplementary Concept] OR "COVID-19" [Supplementary Concept] OR "COVID 19 diagnostic testing" [Supplementary Concept] OR "COVID 19 drug treatment" [Supplementary Concept] OR "COVID 19 serotherapy" [Supplementary Concept] OR "COVID 19 vaccine" [Supplementary Concept] OR "Severe Acute Respiratory Syndrome Coronavirus 2" [tiab] OR ncov*[tiab] OR COVID*[tiab] OR sars-cov-2[tiab] OR "sars cov 2" [tiab] OR "SARS Coronavirus 2" [tiab] OR "Severe Acute Respiratory Syndrome CoV 2" [tiab] OR "Wuhan coronavirus" [tiab] OR "Wuhan seafood market pneumonia virus" [tiab] OR "SARS2" [tiab] OR "2019-nCoV" [tiab] OR "hcov-19" [tiab] OR "novel 2019 coronavirus" [tiab] OR "2019 novel coronavirus 2019*" [tiab] OR "coronavirus 2019*" [tiab] OR "coronavirus disease-19" [tiab] OR "coronavirus disease 2019" "novel coronavirus disease 2019" [tiab] OR "coronavirus ## Search Syntax PubMed 2: ("wuhan"[tiab] or china[tiab] or hubei[tiab]) AND ("Severe Acute Respiratory Syndrome Coronavirus 2"[Supplementary Concept] OR "COVID-19" [Supplementary Concept] OR "COVID 19 diagnostic testing"[Supplementary Concept] OR "COVID 19 drug treatment"[Supplementary Concept] OR "COVID 19 serotherapy"[Supplementary Concept] OR "COVID 19 vaccine"[Supplementary Concept] OR "coronavirus*"[tiab] OR "corona virus*"[tiab] OR ncov[tiab] OR COVID*[tiab] OR sars*[tiab]) #### Search Syntax Embase 1: ('severe acute respiratory syndrome coronavirus 2':ti,ab OR 'severe acute respiratory syndrome coronavirus 2'/exp OR 'COVID 19'/exp OR ncov*:ti,ab OR COVID*:ti,ab OR 'sars cov 2':ti,ab OR 'sars-cov-2':ti,ab OR 'sars coronavirus 2'/exp OR 'severe acute respiratory syndrome cov 2':ti,ab OR 'wuhan coronavirus':ti,ab OR 'wuhan seafood market pneumonia virus':ti,ab OR sars2:ti,ab OR
'2019-ncov':ti,ab OR 'hcov-19':ti,ab OR 'novel 2019 coronavirus':ti,ab OR '2019 novel coronavirus*':ti,ab OR 'novel coronavirus 2019'/exp OR '2019 novel human coronavirus*':ti,ab OR 'human coronavirus 2019':ti,ab OR 'coronavirus disease-19':ti,ab OR 'coronavirus disease 2019':ti,ab OR 'coronavirus disease 2019'/exp OR 'corona virus disease 2019':ti,ab OR 'coronavirus disease 2019':ti,ab OR 'novel coronavirus 2019*':ti,ab OR 'novel coronavirus disease 2019':ti,ab disease':ti,ab OR 'coronavirus disease':ti,ab OR 'coronavirus disease':ti,ab OR 'coronavirus epidemic':ti,ab OR 'coronavirus pandemic':ti,ab OR 'pandemic of coronavirus':ti,ab OR 'severe acute respiratory syndrome coronavirus 2 vaccine'/exp OR 'COVID 19 vaccine'/exp) AND 2020:py #### Search Syntax Embase 2: (wuhan:ti,ab OR china:ti,ab OR hubei:ti,ab) AND ('severe acute respiratory syndrome coronavirus 2':ti,ab OR 'severe acute respiratory syndrome coronavirus 2'/exp OR 'severe acute respiratory syndrome coronavirus 2' OR 'COVID*':ti,ab OR 'COVID 19'/exp OR 'COVID 19' OR coronavirus*:ti,ab OR 'corona virus*':ti,ab OR ncov:ti,ab OR COVID*:ti,ab OR sars*:ti,ab OR 'sars coronavirus 2'/exp) Manual search in ArRvix, BioRvix, ChemRvix, MedRvix, Preprints.org, ResearchSquare und SSRN These search terms will be combined with "systematic review OR meta-analysis" [all fields] to identify eligible systematic reviews. ## 1.2. Study selection For inclusion into this review, a paper has to meet the following criteria: - i. Systematic review with/without meta-analysis - ii. Investigate one or more risk factors such as age and underlying health conditions (including but not limited to asthma, chronic obstructive pulmonary disease, malignancy, diabetes mellitus, cardiovascular diseases, chronic renal disease, diseases of the liver, chronic diseases of the digestive system, hypertension, obesity, and immunocompromised conditions) - iii. Investigate the association between at least one of the risk factors and at least one of the following health outcomes: - SARS-CoV-2 infection: acquisition of symptomatic infection - COVID-19 progression: development of moderate and severe symptoms, hospitalisation, admission to intensive care, ventilation, duration of hospital stay, and (or duration of) ventilation, death - Report measures of associations (odds ratios, hazard ratios, risk ratios) for at least one risk factor and health outcome - v. No restrictions on the study design of the primary studies - vi. No date restriction - vii. No language restriction #### Exclusion criteria are: - i. Reviews that summarise case reports - ii. Reviews that explore the complications of COVID-19 disease - Reviews that examine or model predictors (defined as medical tests, vital signs) of COVID-19 progression - iv. Review that focus on biological properties of the virus - v. Reviews that investigate animal studies - vi. Conference abstracts and protocols of reviews ## 1.3. Data extraction from systematic literature reviews One reviewer conducted data extraction using a predefined data extraction table. The second reviewer confirmed extracted data. The following information was extracted from full texts of included systematic reviews: Title, main author, publication date, date of last literature search, journal, study design (whether meta-analysis), names of databases searched, number of included primary studies, subject characteristics, explored risk factors, included COVID-19-related health outcomes, methods of quality assessment (if conducted), industry sponsoring (of review). #### 1.4. Evaluation with AMSTAR 2 At the beginning of quality appraisal, the full evaluation of all 16 item was conducted. Later, appraisals were abbreviated by focusing on the critical AMSTAR-2 items, using a cut-off as soon as more than one critical item was not met. More than one critical flaw in an AMSTAR-2 quality appraisal leads to a critically low quality rating. ## 1.5. Data extraction from primary studies Authors, title, DOI, journal, country, language, region of country, industry funding, study design, setting, enrolled cohort/ study population, number of patients, age (mean (SD), median (IQR)), percentage of men, COVID-19 case (diagnosis), source of information for pre-existing conditions, outcome/ endpoints, measures of association, methods of adjustment, covariates in adjustment, number of comorbidities included in the model (including BMI and CCI), adjustment for smoking, adjustment for BMI/ obesity, reference age (group) and sex, whether definitions of comorbidities were given. From systematic reviews, we randomly extracted quality evaluation preferring the ones with ROBIN-2 or NOS assessment. Reviews which included the study were also listed. #### 2. Results ## 2.1. Overview of included reviews and primary studies Figures 1 and 2 illustrate selection of systematic reviews and primary studies for re-analysis. Table 1 gives an overview on the most relevant information from included systematic literature reviews as well as the AMSTAR-2 quality ratings (high, moderate, low or critically low). Table 2 shows ratings of each AMSTAR-2 item for included systematic reviews. Table 3 gives an overview of included primary studies. Table 4 summarises the studies with community-based estimates. Figure 1. Selection of systematic reviews Figure 2. Selection of primary studies Table 1 Overview of included systematic reviews (n=120). | Author | Last date of search | Names of databases
searched | Risk factors | Outcomes
related to
COVID-19 | Instrument
of Quality
appraisal | Age-
adjusted
pooled
estimates | AMSTAR rating | Citation | |------------------------|---------------------|--|--|--|---------------------------------------|---|----------------|----------| | Aggarwal | 20.04.20 | PubMed, Embase, CENTRAL | comorbidities (cardiovascular disease) | severity, mortality | NOS | unadjusted | critically low | 1 | | Awortwe | 17.06.20 | PubMed, MEDLINE, Scopus,
Google Scholar | comorbidities (cardiovascular disease,
cerebrovascular disease, hypertension, diabetes,
chronic kidney disease, COPD) | severity, mortality,
ICU admission | nr | not considered | critically low | 2 | | Bellou | 19.04.20 | PubMed | comorbidities (cerebrovascular disease, COPD, diabetes), sex, lab values, symptoms | severity, mortality,
ICU admission,
intubation | nr | unadjusted | critically low | 3 | | Biswas (1) | 21.05.20 | PubMed | comorbidities (diabetes, hypertension,
cardiovascular disease, respiratory disease,
cerebrovascular disease, chronic kidney
disease, chronic liver disease, cancer), age, sex | severity | NOS | unadjusted | critically low | 4 | | Biswas (2) | 25.03.20 | PubMed, The Cochrane
Library, Scinapse, New Engl,
Journal of Medicine, Lancet,
Journal of American Medical
Association, Nature, British
Medical Journal | comorbidities (hypertension, diabetes, respiratory disease, cardio-cerebrovascular disease, kidney disease, coronary heart disease), age, sex | mortality | NOS, Jadad | unadjusted | critically low | 5 | | Chang | 30.05.20 | MEDLINE, Embase, The
Cochrane Library | obesity | severity,
hospitalisation*,
intubation | NOS | unadjusted | critically low | 6 | | Chen | 06.03.20 | PubMed, WoS, CNKI,
Wanfang Data, VIP | comorbidities (hypertension, diabetes, coronary heart disease), lab values | severity | NOS | unadjusted | critically low | 7 | | Cheruiyot | 26.05.20 | PubMed, CNKI, MEDLINE | comorbidities (cancer) | severity, mortality | MINORS | unadjusted | critically low | 8 | | Chidambaram | 08.05.20 | PubMed, Embase, WHO | comorbidites (diabetes, hypertension, heart failure), lab values | severity, mortality | NOS | unadjusted | critically low | 9 | | Chu | 24.05.20 | PubMed, Embase, WoS | obesity | severity, mortality,
in-hospital
mortality, ICU
admission,
intubation, other | NOS | considered | critically low | 10 | | Das | 02.10.20 | PubMed, Google Scholar,
ScienceDirect | obesity | severity | NOS | unadjusted | critically low | 11 | | De Almeida-
Pititto | 06.05.20 | PubMed, Cochrane Libray,
SciELO | comorbidities (diabetes, hypertension, cardiovascular disease), treatment | severity, mortality, ICU admission, intubation | nr | unadjusted | critically low | 12 | | Degarege | 06.05.20 | PubMed, Embase, The
Cochrane Library, CINHAL | comorbidities (hypertension, cardiovascular
disease, respiratory disease), age, sex | severity, mortality | other | considered;
pooled adjusted
and unadjusted | critically low | 13 | |--------------------|----------|---|--|---|---------------|--|----------------|----| | Dorjee | 31.08.20 | MEDLINE, Embase, WoS | comorbidities (COPD, cardiovascular disease,
chronic kidney disease, diabetes, hypertension),
complications | mortality*, other | NOS | considered | critically low | 14 | | Du | 27.08.20 | MEDLINE, PubMed, Embase,
WoS | comorbidities (diabetes, hypertension,
cardiovascular disease), age, sex, heightened
BMI | severity, mortality | NOS | adjusted | critically low | 15 | | Elgohary | 20.04.20 | PubMed,
WoS, Scopus | comorbidities (cancer), lab values | severity, mortality,
ICU admission,
intubation | nr | unadjusted | critically low | 16 | | Figliozzi | 24.04.20 | MEDLINE, WoS, Scopus,
CINAHL | comorbidities (cardiovascular disease, immune
and metabolic disorders, respiratory disease,
cerebrovascular disease, cancer, renal disease,
liver disease) | in-hospital mortality | NOS | unadjusted | critically low | 17 | | Florez-
Perdomo | 01.05.20 | PubMed, Embase, EBSCO
Host, Scopus, ScienceDirect,
MEDLINE, Lilacs | comorbidities (cerebrovascular disease, stroke) | severity, mortality | ROBINS-I, NOS | unadjusted | critically low | 18 | | Földi | 11.05.20 | PubMed/MEDLINE, Embase,
CENTRAL, Scopus, WoS | obesity | ICU admission, intubation | QUIPS | unadjusted | critically low | 19 | | Gao | 12.04.20 | PubMed, Embase, CENTRAL,
WoS, CBM, CNKI, Wanfang
Data | comorbidities (cancer) | severity, mortality | NOS | not considered | critically low | 20 | | Giannakoulis | 27.04.20 | PubMed, MedRxiv, COVID-19
Open research Dataset (CORD-
19) | comorbidities (cancer), age | severity, mortality,
ICU admission | other | unadjusted | critically low | 21 | | Guo | 30.05.20 | PubMed, WoK, MedRxiv,
bioRxiv, CNKI, Wanfang Data | comorbidities (diabetes) | severity, mortality | nr | unadjusted | critically low | 22 | | Hariyanto | 25.10.20 | PubMed, Europe PMC | comorbidities (dementia) | severity, mortality, other | NOS | not considered | critically low | 23 | | Hessami | 27.03.20 | PubMed, Embase, The
Cochrane Library, Scopus,
WoS, MedRxiv, Google
Scholar, other journal websites | comorbidities (hypertension, heart failure,
coronary artery disease, cardiovascular disease) | severity, mortality,
ICU admission | NOS | not considered | critically low | 24 | | Huang | 10.08.20 | PubMed, Embase, WoS,
Chinese National Knowledge
Infrastructure (CNKI),
Wanfang Data, SinoMed,
MedRxiv | obesity, heightened BMI, lab values | severity, mortality,
hospitalisation*,
ICU admission,
intubation | NOS | considered | low | 25 | | Hussain | 26.04.20 | PubMed | comorbidities (diabetes) | ICU admission,
hospitalisation* | NOS | not considered | critically low | 26 | | Islam | 17.05.20 | PubMed, ScienceDirect, SAGE | comorbidities (hypertension, cardiovascular
disease, diabetes, cerebrovascular disease,
respiratory disease, kidney disease, liver
disease, cancer), age, sex, symptoms | severity, mortality | NOS | considered | critically low | 27 | | Izcovich | 28.04.20 | PubMed/MEDLINE,
CENTRAL, Embase | comorbidities (cerebrovascular disease, COPD, chronic kidney disease, cardiovascular disease, | severity, mortality | QUIPS | considered | critically low | 28 | | | | | hypertension, diabetes, dementia, cancer), age, | | | | | | |-------------|----------|--|---|--|-------|----------------------------------|----------------|----| | | | | complications, sex, lab values, symptoms, vital | | | | | | | | | | signs | | | | <u> </u> | 20 | | Kahathuduwa | 07.03.20 | PubMed, Scopus, WoS | comorbidities (hypertension), age, lab values, symptoms | severity, mortality | NHLBI | unadjusted | critically low | 29 | | Khan | 01.05.20 | MEDLINE, WoS, Scopus,
CINAHL databases, MedRxiv,
BioRxiv, SSRN | comorbidities (hypertension, cardiovascular
disease, diabetes, immune and metabolic
disorders, respiratory disease, cerebrovascular
disease, cancer, renal disease, liver disease) | mortality of
COVID-19 patients | NOS | unadjusted | critically low | 30 | | Khunti | 23.04.20 | MEDLINE, Scopus, WHO | comorbidities (hypertension, diabetes,
cardiovascular disease, COPD, chronic kidney
disease, cancer) | severity, mortality | NOS | unadjusted | critically low | 31 | | Kovalic | 16.05.20 | MEDLINE, PubMed, Embase,
MedRxiv | comorbidities (chronic liver disease) | severity, mortality,
ICU admission,
intubation | nr | unadjusted | critically low | 32 | | Kumar (a) | 17.03.20 | PubMed | comorbidities (hypertension, diabetes,
cardiovascular disease, endocrine disease,
gastrointestinal disease, COPD), age, sex, lab
values, symptoms | severity | NIH | considered in quality assessment | critically low | 33 | | Kumar (b) | 22.04.20 | PubMed | comorbidities (diabetes) | severity | NIH | considered in quality assessment | critically low | 34 | | Li, B. | 01.02.20 | Embase, PubMed | comorbidities (hypertension, cardiovascular
disease, cerebrovascular disease, diabetes),
symptoms, age | severity | nr | unadjusted | critically low | 35 | | Li, J. | 06.04.20 | PubMed, Embase, Scopus, The
Cochrane Library, Chinese
Medical Journal, BioRxiv,
MedRxiv | comorbidities (diabetes, cancer, hypertension), age, sex, lab values, symptoms, treatment | severity, mortality,
ICU admission,
intubation | NOS | not considered | low | 36 | | Li, X. | 14.04.20 | PubMed, Embase, WoS | comorbidities (cardiovascular disease,
hypertension, acute cardiac injury) | in-hospital mortality | NOS | unadjusted | critically low | 37 | | Lippi | 26.03.20 | Scopus, MEDLINE, WoS | comorbidities (hypertension), age | severity, mortality | nr | considered, recommend | critically low | 38 | | Liu, H. | 25.04.20 | PubMed, MEDLINE (via
Ovid), Embase, CDC, NIH | comorbidities (diabetes, cardiovascular disease, hypertension, COPD), age, symptoms | severity, mortality,
ICU admission | NOS | not considered | critically low | 39 | | Liu, N. | 01.08.20 | PubMed, Embase, WoS | comorbidities (dementia) | mortality*, other | NOS | not considered | critically low | 40 | | Liu, Y. | 31.07.20 | PubMed, The Cochrane
Library, Embase (via Ovid) | comorbidities (hypertension, COPD), sex, treatment, symptoms | mortality | NOS | considered, not included | low | 41 | | Liu, YF. | 13.04.20 | PubMed, MedRxiv, CNKI,
Wanfang Data | comorbidities (chronic kidney disease),
complications, lab values | severity | NOS | unadjusted | critically low | 42 | | Luo | 01.07.20 | PubMed, Embase, WoS, The
Cochrane Library | comorbidities (hypertension, cardiovascular
diseases, COPD, chronic kidney disease,
cancer), complications | severity, mortality | NOS | considered, not included | critically low | 43 | | Malik | 15.08.20 | PubMed, WoS, Scopus,
MedRxiv | comorbidities (obesity) | severity | NOS | considered, not included | critically low | 44 | | Mantovani | 15.05.20 | PubMed, Scopus, WoS | comorbidities (diabetes) | severity, in-hospital
mortality | NOS | considered, not pooled | critically low | 45 | | Matsushita | 03.04.20 | PubMed, Embase | comorbidities (hypertension, diabetes, and cardiovascular disease), age, sex | severity | NOS | considered,
pooled for CVD | critically low | 46 | |--------------|----------|--|--|---------------------------------------|----------|--|----------------|----| | Mehraeen | 27.06.20 | PubMed, Scopus, Embase,
Google Scholar, WoS | comorbidities (hypertension, diabetes), age,
countries' income, lab values, symptoms, vital
signs | mortality | other | unadjusted | critically low | 47 | | Mellor | 26.08.20 | Embase, MEDLINE, MedRxiv,
Google Scholar | comorbidities (HIV), treatment | severity | JBI | considered,
reported | critically low | 48 | | Meng | 05.07.20 | PubMed, Cochrane, WoS,
Wanfang Data, CNKI | comorbidities (cardiovascular disease,
hypertension, diabetes), complications | severity | other | not considered | critically low | 49 | | Mesas | 27.07.20 | MEDLINE, Scopus, WoS | comorbidities (kidney disease, hypertension,
cancer, diabetes, pulmonary disease), age, sex,
lab values, obesity, symptoms | in-hospital mortality | QUIPS | adjusted the
pooled-OR for
age, sex and
health condition
in the review | low | 50 | | Momtazmanesh | 21.04.20 | PubMed, Embase | comorbidities (cardiovascular disease,
hypertension, diabetes), complications, lab
values | severity, mortality,
ICU admission | NOS | not considered | critically low | 51 | | Moula | 18.05.20 | PubMed | comorbidities (cardiovascular disease, coronary
artery disease, hypertension, cerebrovascular
disease, diabetes), age, sex | mortality | ROBINS-I | considered, not reported | critically low | 52 | | Nandy | 28.04.20 | PubMed, CENTRAL | comorbidities (hypertension, diabetes,
cardiovascular disease, COPD, chronic kidney
disease) | severity | NOS | unadjusted | critically low | 53 | | Noor | 11.08.20 | PubMed, ScienceDirect,
Google Scholar | comorbidities (obesity, hypertension, diabetes, cardiovascular disease, cancer, cerebrovascular disease, COPD, coronary heart disease, chronic renal disease, chronic liver disease, chronic lung disease, chronic kidney disease), age, sex | mortality, ICU
admission* | NOS | not considered | critically low | 54 | | Ofori-Asenso | 28.04.20 | MEDLINE, Embase,
ScienceDirect | comorbidities (cancer) | severity | NOS | not considered | critically low | 55 | | Palaiodimos | 10.05.20 | MEDLINE, Embase, Google
Scholar, MedRxiv | comorbidities (diabetes) | in-hospital mortality | QUIPS | considered,
pooled
unadjusted | critically low | 56 | | Pan | 06.07.20 | PubMed, Embase, MEDLINE
(via Ovid), MedRxiv | comorbidities
(metabolic-associated fatty liver disease) | severity | NOS | unadjusted | critically low | 57 | | Park (1) | 01.07.20 | PubMed, Embase, ASCO,
ESMO, AACR, MedRxiv,
BioRxiv | comorbidities, sex, treatment | mortality | NOS | adjusted, but
treatment OR | critically low | 58 | | Park (2) | 01.06.20 | PubMed, Embase, ASCO 2020
Virtual Annual Conference,
AACR 2020 COVID-19,
Cancer, ESMO conferences | comorbidities (cancer), sex | severity, mortality | NOS | considered,
pooled for
cancer | critically low | 59 | | Parohan | 01.05.20 | WoS, PubMed, Scopus, The
Cochrane Library, Google
Scholar | comorbidities (hypertension, cardiovascular disease, diabetes, COPD, cancer), age, sex | mortality | NOS | adjusted | critically low | 60 | | Parveen | 31.03.20 | PubMed, The Cochrane Library | comorbdities (diabetes, hypertension) | severity | NIH | unadjusted | critically low | 61 | | Patel (a) | 30.04.20 | PubMed, WoS, Scopus | comorbidities (cerebrovascular disease) | severity, in-hospital
mortality, ICU
admission,
intubation | NOS | adjusted in regression | critically low | 62 | |---------------------|----------|--|---|---|------------|---|----------------|----| | Patel (b) | 31.05.20 | PubMed, WoS, Scopus,
MedRxiv | comorbidities (cerebrovascular disease,
cardiovascular disease, chronic liver disease),
symptoms | severity, mortality,
intubation, ICU
admission* | NOS | age-adjusted
meta-regression
models in review | critically low | 63 | | Popkin | 15.07.20 | PubMed, Google Scholar,
MedRxiv, BioRxiv, Wanfang
Data, CNKI, ICNARC and
others | obesity | mortality,
hospitalisation*,
ICU admission | nr | considered | critically low | 64 | | Pranata (1) | 23.04.20 | PubMed, SCOPUS,
EuropePMC, CENTRAL | comorbidites (chronic kidney disease, renal replacement therapy) | severity | nr | not considered | critically low | 65 | | Pranata (2) | 01.04.20 | PubMed, EuropePMC,
SCOPUS, CENTRAL | comorbidities (COPD) | severity, mortality,
ICU admission,
other | nr | unadjusted | critically low | 66 | | Pranata (3) | 14.04.20 | PubMed, SCOPUS, Europe
PMC, CENTRAL, Google
Scholar, Pre-Print Servers | comorbidities (hypertension, diabetes, cardiovascular disease, respiratory disease), sex | severity | NOS | unadjusted | critically low | 67 | | Pranata (a) | 07.04.20 | PubMed, SCOPUS,
EuropePMC, Google Scholar | comorbidities (hypertension), sex | mortality of COVID-19 patients | nr | not considered | critically low | 68 | | Pranata (b) | nr | PubMed, Europe PMC,
ProQuest, CENTRAL | comorbidities (obesity) | severity, mortality | NOS | considered, used | critically low | 69 | | Rahman | 18.04.20 | PubMed, Google Scholar,
Embase, The Cochrane Library | comorbidities (hypertension, diabetes), sex, symptoms | severity | nr | unadjusted | critically low | 70 | | Roncon | 25.03.20 | MEDLINE, Scopus, WoS | comorbidities (diabetes, hypertension) | mortality, ICU
admission | NOS | unadjusted | critically low | 71 | | Sabatino | 11.06.20 | PubMed, Scopus, Google
Scholar | comorbidities (cardiovascular disease), age, complications | mortality | QAT-OC/CSS | considered in quality assessment | critically low | 72 | | Salunke | 16.04.20 | PubMed, CENTRAL | comorbidites (cancer) | mortality, ICU
admission | NOS | not considered | critically low | 73 | | Sanchez-
Ramirez | 15.04.20 | PubMed, WoS, MEDLINE (via
Ovid) | comorbidities (COPD), age, sex | severity | nr | not considered | critically low | 74 | | Sepandi | 23.03.20 | MEDLINE/PubMed, Scopus,
Google Scholar | comorbidities (diabetes, hypertension, kidney
disease, respiratory disease, heart disease), age,
sex | mortality | NOS | unadjusted | critically low | 75 | | Shang | 10.07.20 | PubMed, WoS, MedRxiv,
COVID-19 academic research
communication platform | comorbidities (diabetes) | severity, mortality | NOS | not considered | critically low | 76 | | Shi | 29.04.20 | PubMed, Embase, The
Cochrane Library, three
electronic Chinese databases | comorbidities (chronic kidney disease,
respiratory disease, cardio-cerebrovascular
disease), age, complications, sex, lab values,
treatment, symptoms, vital signs | mortality | QUIPS | considered,
pooled | critically low | 77 | | Singh | 29.07.20 | PubMed, Embase | comorbidities (inflammatory bowel disease) | mortality,
hospitalisation*,
ICU admission,
other | JBI | not considered | critically low | 78 | |--------------|----------|---|---|--|--------|----------------------------------|----------------|----| | Soeroto | 28.07.20 | PubMed, Embase | comorbidities (diabetes, hypertension), age, sex | severity | nr | not considered | critically low | 79 | | Sreenivasan | 30.03.20 | MEDLINE, Scopus, Embase | comorbidities (cardiovascular disease, heart
failure, hypertension, diabetes), sex, lab values,
vital signs | severity, mortality, intubation | nr | not considered | critically low | 80 | | Ssentongo | 07.07.20 | MEDLINE, SCOPUS, OVID,
The Cochrane Library,
MedRxiv | comorbidities (hypertension, heart failure,
diabetes, chronic kidney disease, cancer,
cardiovascular disease) | mortality | NOS | considered | critically low | 81 | | Su | 03.05.20 | PubMed, Embase, MedRxiv | comorbidities (cancer, hypertension, diabetes, respiratory disease) | mortality, ICU
admission | JBI | not considered | critically low | 82 | | Sze | 31.08.20 | MEDLINE, Embase,
PROSPERO, The Cochrane
Library, MedRxiv | ethnicity | mortality, ICU
admission | JBI | adjusted | critically low | 83 | | Tabrizi | 12.03.20 | PubMed, Scopus, Embase,
WoS, Google Scholar | comorbidities (COPD, diabetes, hypertension, cardiovascular disease, chronic kidney disease), symptoms | severity | NOS | not considered | critically low | 84 | | Tamara | 14.04.20 | Cochrane, MEDLINE, Embase,
PubMed | comorbidities (obesity) | severity | NOS | recommend
adjustment | critically low | 85 | | Tamuzi | 01.07.20 | CENTRAL, PubMed,
MedRxiv, Google Scholar,
Clinical Trials Registry
databases | comorbidities (HIV, tuberculosis) | severity, mortality | NOS | not considered | critically low | 86 | | Tavan | nr | Scopus, PubMed, Cochrane,
WoS, Google Scholar | comorbidities (hypertension, diabetes, cardiovascular disease), symptoms | mortality | STROBE | unadjusted | critically low | 87 | | Tian, W. | 24.04.20 | PubMed, Google Scholar,
WoS, CNKI | comorbidities (hypertension, diabetes, coronary
heart disease), lab values | in-hospital mortality | AHRQ | unadjusted | critically low | 88 | | Tian, Y. (1) | 23.04.20 | PubMed, Elsevier, WoS,
CNKI, Wanfang Data, VIP | comorbidities (cancer) | severity, mortality | nr | adjusted prevalence | critically low | 89 | | Tian, Y. (2) | 30.06.20 | Embase, PubMed | comorbidities (hypertension, cardiovascular disease, diabetes, respiratory disease, cancer) | severity | nr | not considered | low | 90 | | Toraih | 08.05.20 | WoS, PubMed | comorbidities (cardiovascular disease, chronic
heart disease, COPD, hypertension, diabetes,
cancer), age, complications, lab values,
treatment | severity | nr | suggest
confounding of
AST | critically low | 91 | | Varikasuvu | 15.05.20 | Scopus, ScienceDirect | comorbidities (diabetes) | severity, mortality | NOS | unadjusted | critically low | 92 | | Venkatesulu | 23.05.20 | PubMed/MEDLINE, Embase,
Cochrane Central, Google
Scholar, MedRxiv | comorbidities (cancer with subtypes) | mortality, ICU
admission,
intubation | nr | not considered | critically low | 93 | |--------------|----------|--|---|---|----------|------------------------|----------------|-----| | Vijenthira | 20.08.20 | PubMed, Embase | comorbidities (cancer), age, treatment | mortality, ICU
admission,
intubation | JBI | unadjusted | critically low | 94 | | Villalobos | 29.04.20 | MEDLINE, bioRXiv,
MedRxiv, national (public)
health institutitions | comorbidities (cerebrovascular disease,
cardiovascular disease, hypertension, renal
disease), healthcare workers | severity, mortality,
hospitalisation* | ROBINS-I | not considered | critically low | 95 | | Wang, B. | 01.03.20 | PubMed, The Cochrane
Library, Embase and others | comorbidities (hypertension, diabetes, COPD, cardiovascular disease, cerebrovascular disease) | severity, ICU
admission, other | NOS | unadjusted | critically low | 96 | | Wang, X. | 06.04.20 | PubMed, Embase, WoS,
MedRxiv, BioRxiv | comorbidities (hypertension, cardiovascular
disease, chronic kidney disease, diabetes),
complications | severity | nr | unadjusted | critically low | 97 | | Wang, Y. (1) | 05.08.20 | PubMed, Embase, The
Cochrane Library, WoS, CNKI | comorbidities (asthma) | severity, mortality | NOS | unadjusted | critically low | 98 | | Wang, Y. (2) | 15.06.20 | PubMed, Scopus, Embase,
MedRxiv, Google Scholar | comorbidities (asthma) | mortality | Ro-BANS | not considered | critically low | 99 | | Wang,
Z. | 16.03.20 | PubMed, WoS, The Cochrane
Library, CBM, CNKI,
Wanfang Data, VIP | comorbidities (hypertension, diabetes, cardiovascular disease), age, complications, sex, symptoms | severity, mortality | NOS | unadjusted | critically low | 100 | | Wingert | 12.06.20 | MEDLINE (via Ovid),
Epistemonikos COVID-19 in
L·OVE Platform, McMaster
COVID-19 Evidence Alerts,
selected websites | comorbidities (liver disease, obesity, diabetes,
heart failure, chronic kidney disease, dementia),
age, ethnicity, homelessness, income | severity, mortality,
hospitalisation*,
ICU admission,
intubation | other | considered, not pooled | low | 101 | | Wu, J. | 09.03.20 | Medical Records from Huai'an
Fourth People's Hospital | comorbidities (diabetes), age, sex | severity | nr | unadjusted | critically low | 102 | | Wu, Z. H. | 14.04.20 | MEDLINE/ PubMed, Embase,
WoS | comorbidities (diabetes) | mortality | NOS | adjusted | critically low | 103 | | Xu, J. | 10.08.20 | PubMed, WoS, Embase | comorbidities (cerebrovascular disease) | severity, mortality | NOS | considered | critically low | 104 | | Xu, L. | 23.02.20 | CNKI, Wanfang Data, Weipu
Database, CBM, PubMed,
Embase, CENTRAL, WoS | comorbidities (hypertension, diabetes, cardiovascular disease, COPD), age, sex, lab values, symptoms, vital signs | severity | AHRQ | unadjusted | critically low | 105 | | Yang, J. (1) | 22.04.20 | PubMed, Embase, WOS,
Cochrane, CNKI, Wanfang,
Sinomed | obesity | severity | NOS | not considered | critically low | 106 | | Yang, J. (2) | 27.07.20 | PubMed, Embase, WoS | obesity | hospitalisation*, in-
hospital mortality,
ICU admission,
intubation, other | NOS | considered; not
in meta-analysis | critically low | 107 | |--------------|----------|--|--|---|--------|--------------------------------------|----------------|-----| | Yang, J. (3) | 25.02.20 | PubMed, Embase, WoS | comorbidities (hypertension, respiratory disease, cardiovascular disease) | severity | none | unadjusted | critically low | 108 | | Yang, S. | 02.04.20 | PubMed, WoS, BioRxiv,
MedRxiv, CNKI | comorbidities (coronary heart disease, cardiovascular disease, cerebrovascular disease, lung disease, cancer, hypertension, heart disease, chronic kidney disease, diabetes), age, complications, sex, lab values, symptoms, vital signs | mortality | NOS | unadjusted | critically low | 109 | | Yekedüz | 01.09.20 | MEDLINE | comorbidities (cancer) | severity, mortality | NOS | considered,
reported in
figure | critically low | 110 | | Yonas | nr | PubMed, EuropePMC,
SCOPUS, CENTRAL,
MedRxiv | comorbidities (heart failure) | severity, mortality | none | not considered | critically low | 111 | | Youseef | 16.04.20 | PubMed, WoS, Scopus,
ScienceDirect | comorbidities (hypertension, chronic kidney
disease, diabetes, chronic liver disease,
cardiovascular disease, cerebrovascular disease,
cancer), complications, lab values, treatment | severity, mortality | NOS | unadjusted | critically low | 112 | | Yu | 25.07.20 | PubMed, WoS, CNKI | comorbidities (cardio-cerebrovascular disease) | severity, mortality | NOS | not considered | critically low | 113 | | Zaki | 20.05.20 | Europe PMC, Google Scholar,
PubMed | comorbidities (COPD, cardiovascular disease, cancer, kidney disease, coronary heart disease), symptoms | severity | nr | unadjusted | critically low | 114 | | Zhang, H. | 09.06.20 | PubMed, Embase, conference proceedings | comorbidities (cancer, hypertension, diabetes), age | severity, mortality | NOS | not considered | critically low | 115 | | Zhang, J. | 20.03.20 | PubMed, ScienceDirect, WoS,
Wiley Online Library, Embase,
CNKI | comorbidities (hypertension), age | severity, mortality | NOS | not considered | critically low | 116 | | Zhao | 22.03.20 | PubMed, WoS, Cochrane,
WanFang Data, CNKI | comorbidities (COPD) | severity | nr | unadjusted | critically low | 117 | | Zheng | 20.03.20 | PubMed, Embase, WoS, CNKI | comorbidities (hypertension, diabetes, cardiovascular disease, respiratory disease), age, sex, lab values, symptoms | severity, other | MINORS | unadjusted | critically low | 118 | | Zhou | 25.04.20 | PubMed, Embase, The
Cochrane Library | comorbidities (obesity, hypertension, diabetes, cardiovascular disease, respiratory disease, | severity, mortality | nr | considered in limitations | critically low | 119 | | | | | cerebrovascular disease, cancer, chronic kidney
disease, liver disease) | | | | | | |------|----------|---|--|-----------|-----|------------------------------|----------------|-----| | Zuin | 01.07.20 | The Cochrane Library, Embase,
PubMed, Google Scholar | comorbidities (dementia) | mortality | NOS | considered, age as moderator | critically low | 120 | ^{*}of COVID-19 patients AHRQ, Agency for Healthcare Research and Quality; CBM, Chinese Biomedical Literature Database; CDC, Centers for Disease Control and Prevention; CENTRAL, Cochrane Central Register of Controlled Trials; CNKI, China National Knowledge Infrastructure; COPD, chronic obstructive pulmonary disease; JBI, Critical appraisal tools by the Joanna Briggs Institute; MINORS, Methodological Index for Non-Randomized Studies; NHI, National Institutes of Health; NIH/NHLBI, Quality Assessment Tools; NOS, Newcastle Ottawa Scale; nr, not reported; QAT-OC/CSS, Quality Assessment Tool for Observational and Cross-Sectional Studies; QUIPS, Quality In Prognosis Studies; ROBINS-I, Risk Of Bias In Non-randomized Studies of Interventions; SAGE, Strategic Advisory Group of Experts on Immunization; WHO, World Health Organization; WoK, Web of Knowledge; WoS, Web of Science Figure 3. Overview of included systematic reviews (SRs). (A) Number of SRs by research focus ("health conditions" denotes different pre-existing health conditions) and number of included primary studies. (B) Number of SRs by date of last search (in red), and date either of publication or pre-print availability (in blue). (C) Methodological characteristics of included SRs: number of searched databases, results of the evaluation with AMSTAR-2, presentation of age-adjusted risk estimates, and risk of bias (ROB) tool (nr, not reported) ## Table 2 Results of quality evaluation of the included systematic reviews Item1. Did the report of the review contain an explicit statement that the review methods were established prior to the conduct of the review and did the report justify any significant deviations from the protocol? Item2. Did the review authors use a comprehensive literature search strategy? Item3. Did the review authors provide a list of excluded studies and justify the exclusions? Item4.Did the review authors use a satisfactory technique for assessing the risk of bias (RoB) in individual studies that were included in the review? Item5. If meta-analysis was performed, did the review authors use appropriate methods for statistical combination of results? Item6. If they performed quantitative synthesis did the review authors carry out an adequate investigation of publication bias (small study bias) and discuss its likely impact on the results of the review? Item7. If they performed quantitative synthesis did the review authors carry out an adequate investigation of publication bias (small study bias) and discuss its likely impact on the results of the review? | Author | Item 1 | Item 2 | Item
3 | Item 4 | Item
5 | Item
6 | Item
7 | Quality
rating | Citation | |------------------------|------------------|------------------|-----------|------------------|-----------|-----------|-----------|-------------------|----------| | Aggarwal | yes | partially
yes | yes | yes | no | no | yes | critically
low | 1 | | Awortwe | no | no | no | - | - | - | - | critically
low | 2 | | Bellou | no | no | no | no | yes | yes | no | critically
low | 3 | | Biswas (1) | no | partially
yes | no | partially
yes | - | - | yes | critically
low | 4 | | Biswas (2) | no | no | no | - | - | - | - | critically
low | 5 | | Chang | no | partially
yes | no | yes | yes | yes | yes | critically
low | 6 | | Chen | no | no | no | yes | - | - | yes | critically
low | 7 | | Cheruiyot | no | partially
yes | no | - | - | - | - | critically
low | 8 | | Chidambaram | no | no | no | yes | yes | yes | yes | critically
low | 9 | | Chu | no | - | no | - | - | =. | | critically
low | 10 | | Das | no | - | no | - | - | - | - | critically
low | 11 | | de Almeida-
Pititto | partially
yes | partially
yes | no | no | yes | no | yes | critically
low | 12 | | Degarege | - | no | no | - | - | - | - | critically
low | 13 | | Dorjee | no | - | no | - | - | - | - | critically
low | 14 | | Du | no | no | no | yes | yes | no | yes | critically
low | 15 | | Elgohary | no | partially
yes | no | no | yes | no | no | critically
low | 16 | | Figliozzi | partially
yes | partially
yes | no | yes | no | yes | yes | critically
low | 17 | | Florez-
Perdomo | no | partially
yes | no | yes | - | yes | yes | critically
low | 18 | | Földi | yes | partially
yes | no | yes | no | no | yes | critically
low | 19 | | Gao | yes | no | no | yes | - | - | - | critically
low | 20 | | Giannakoulis | yes | no | no | yes | yes | no | no | critically
low | 21 | | Guo | no | partially
yes | no | no | - | no | yes | critically
low | 22 | | Hariyanto | no | no | - | - | - | - | - | critically
low | 23 | | Hessami | no |
partially
yes | no | - | - | - | - | critically
low | 24 | | Huang | no | partially
yes | yes | yes | yes | yes | yes | low | 25 | | Hussain | no | no | no | yes | no | no | no | critically
low | 26 | | Islam | no | - | no | - | - | - | - | critically
low | 27 | | Izkovich | partially
yes | partially
yes | no | partially
yes | no | - | no | critically
low | 28 | | Kahathuduwa | no | partially
yes | no | partially
yes | yes | - | - | critically
low | 29 | | Khan | no | no | no | yes | yes | yes | yes | critically low | 30 | |------------------|------------------|------------------|-----|-----|-----|-----|-----|-------------------|----| | Khunti | no | - | no | - | - | - | - | critically
low | 31 | | Kovalic | no | - | no | no | - | - | - | critically low | 32 | | Kumar (a) | partially
yes | no | no | yes | yes | no | yes | critically
low | 33 | | Kumar (b) | no | no | - | - | - | - | - | critically low | 34 | | Li, B. | no | - | no | no | - | - | - | critically low | 35 | | Li, J | yes | partially
yes | no | yes | - | yes | yes | low | 36 | | Li, X. | no | - | no | - | - | - | - | critically low | 37 | | Lippi | no | - | no | no | - | - | yes | critically
low | 38 | | Liu, H. | no | partially
yes | no | yes | yes | yes | yes | critically
low | 39 | | Liu, N. | no | - | no | - | - | - | - | critically
low | 40 | | Liu, Y. | yes | partially
yes | no | yes | yes | yes | yes | low | 41 | | Liu, YF. | no | - | no | - | - | - | - | critically
low | 42 | | Luo | no | no | - | - | - | - | - | critically
low | 43 | | Malik | no | - | no | - | - | - | - | critically
low | 44 | | Mantovani | no | no | - | - | - | - | - | critically
low | 45 | | Matsushita | - | no | no | - | - | - | - | critically
low | 46 | | Mehraeen | no | no | - | - | - | - | - | critically
low | 47 | | Mellor | no | - | no | - | - | - | - | critically
low | 48 | | Meng | no | - | no | - | - | - | - | critically
low | 49 | | Mesas | yes | partially
yes | no | yes | yes | yes | yes | low | 50 | | Momtazmanes
h | no | partially
yes | no | yes | - | yes | yes | critically
low | 51 | | Moula | no | no | no | yes | yes | yes | yes | critically
low | 52 | | Nandy | no | partially
yes | no | no | yes | - | no | critically
low | 53 | | Noor | no | no | no | yes | yes | yes | yes | critically
low | 54 | | Ofori-Asenso | no | partially
yes | no | no | - | - | - | critically
low | 55 | | Palaiodimos | no | partially
yes | no | yes | no | yes | yes | critically
low | 56 | | Pan | no | - | no | - | - | - | - | critically
low | 57 | | Park (1) | no | no | no | no | yes | yes | yes | critically
low | 58 | | Park (2) | no | no | no | yes | yes | yes | yes | critically
low | 59 | | Parohan | no | partially
yes | yes | no | yes | yes | yes | critically
low | 60 | | Parveen | no | no | no | yes | - | - | no | critically
low | 61 | | Patel (a) | no | no | - | - | - | - | - | critically low | 62 | | Patel (b) | no | - | no | - | - | - | - | critically low | 63 | | Popkin | no | partially
yes | no | yes | no | yes | no | critically low | 64 | | Pranata (1) | no | no | - | - | - | - | - | critically low | 65 | | Pranata (2) | no | no | no | yes | no | no | yes | critically low | 66 | | Pranata (3) | no | no | - | - | - | - | - | critically
low | 67 | |---------------------|-----------|------------------|----------|-----------|----------|----------|-------|-------------------|-----| | Pranata (a) | no | - | no | - | - | - | - | critically | 68 | | Pranata (b) | no | no | - | - | - | - | - | low
critically | 69 | | Rahman | no | no | - | - | - | - | - | low
critically | 70 | | Roncon | no | no | - | - | - | - | - | low
critically | 71 | | Sabatino | no | no | no | - | - | - | _ | low
critically | 72 | | Salunke | no | partially | no | no | yes | _ | yes | low
critically | 73 | | Sanchez- | no | yes - | no | - | - | _ | - | low
critically | 74 | | Ramirez | | | | | | | | low
critically | 75 | | Sepandi | no | - | no | - | - | - | - | low | | | Shang | no | no | no | yes | yes | yes | yes | critically
low | 76 | | Shi | no | partially
yes | no | - | - | - | - | critically
low | 77 | | Singh | yes | no | no | no | yes | yes | yes | critically
low | 78 | | Soeroto | no | no | no | no | no | no | yes | critically
low | 79 | | Sreenivasan | yes | partially
yes | no | no | - | - | - | critically
low | 80 | | Ssentongo | yes | partially
yes | no | yes | yes | yes | yes | critically
low | 81 | | Su | no | - yes | no | - | - | - | - | critically
low | 82 | | Sze | yes | no | no | - | - | - | - | critically | 83 | | Tabrizi | no | no | - | - | - | - | - | low
critically | 84 | | Tamara | yes | no | no | yes | - | - | - | low
critically | 85 | | Tamuzi | yes | no | yes | - | - | - | yes | low
critically | 86 | | Tavan | no | partially | no | - | - | - | yes | low
critically | 87 | | Tian, W. | no | yes | no | - | _ | _ | - | low
critically | 88 | | Tian, Y. (1) | | | - | _ | _ | | | low
critically | 89 | | | no | no | | | | - | - | low | | | Tian, Y. (2) Toraih | yes
no | yes
- | no
no | yes
- | yes
- | yes
- | yes - | low
critically | 90 | | Varikasuvu | | partially | | ***** | | mo. | ***** | low
critically | 92 | | | yes | yes | no | yes | no | no | yes | low | | | Venkatesulu | yes | partially
yes | no | no | - | - | - | critically
low | 93 | | Vijenthira | no | partially
yes | no | - | - | - | - | critically
low | 94 | | Villalobos | yes | no | no | yes | no | no | no | critically
low | 95 | | Wang, B. | no | - | no | - | - | - | - | critically low | 96 | | Wang, X. | no | - | no | - | - | - | - | critically | 97 | | Wang, Y. (1) | yes | - | no | yes | - | - | no | low | 98 | | Wang, Y. (2) | no | no | no | - | - | - | - | low | 99 | | Wang, Z. | yes | no | no | - | - | - | - | low
critically | 100 | | Wingert | yes | no | yes | partially | NA | yes | NA | low
low | 101 | | Wu, J. | no | no | no | yes
- | - | - | - | critically | 102 | | Wu, Z. H. | no | - | no | - | - | - | - | low
critically | 103 | | Xu, J. | no | partially | no | - | _ | - | - | low
critically | 104 | | 2 x u, J. | 110 | yes | 110 | | | | | low | 20 | | Xu, L. | no | - | no | - | - | - | - | critically | 105 | |--------------|-----|------------------|----|-----|-----|-----|-----|--------------------------|-----| | Yang, J. (1) | no | no | - | - | - | - | - | low
critically
low | 106 | | Yang, J. (2) | yes | no | no | - | - | - | - | critically | 107 | | Yang, J. (3) | no | no | no | - | - | - | - | critically
low | 108 | | Yang, S. | no | - | no | - | - | - | - | critically
low | 109 | | Yekedüz | no | no | no | - | - | - | - | critically
low | 110 | | Yonas | no | partially
yes | no | - | - | - | - | critically
low | 111 | | Youssef | no | - | no | - | - | - | - | critically
low | 112 | | Yu | no | partially
yes | no | yes | yes | yes | yes | critically
low | 113 | | Zaki | - | - | no | no | - | - | - | critically
low | 114 | | Zhang, H. | no | - | no | - | - | - | - | critically
low | 115 | | Zhang, J. | no | no | no | - | - | - | - | critically
low | 116 | | Zhao | no | - | no | - | - | - | - | critically
low | 117 | | Zheng | no | - | no | - | - | - | - | critically
low | 118 | | Zhou | no | partially
yes | no | no | no | yes | yes | critically
low | 119 | | Zuin | no | no | - | - | - | - | - | critically
low | 120 | ^{- ,} not rated; NA, not applicable Table 3 Overview of included primary studies (n=160) | Study | Study design; setting,
number of hospitals;
period;
Study population | Sample size; age
(median (IQR),
mean (SD or CI)
or % in certain
age group(s)); %
of males | Given definition
of COVID-19/
pre-existing
condition (if yes,
see section 2.3
for detail) | Outcomes
relevant
for review | Adjustment method (Regression Model) /
Covariates / Reference age and sex category | Risk
of
bias | Analyses the study participated in [Main meta-analyses reported as: number of the resulted effect estimates the study contributed to; a meta-analysis is described as Condition-Outcome-Measure of association-Region-Total number of studies in the analysis-I ² %] | |---|--|---|--|---|---|--------------------
--| | African Region | n | | | | | | | | Boulle;
South
Africa ¹²¹ | cohort; multi-center; 1. Mar - 9. Jun; individuals utilizing public sector health services diagnosed with COVID-19 | 22308; SARS-
CoV-2 cases:
9.6%>60yo,
Hospitalized:
61%>60yo; 38% | PCR / yes,
summary of
evidence used to
infer different
comorbidities | case
mortality,
hospital
mortality | Cox / all models: age, sex, location and comorbidities (DM, HTN, CKD, Resp, HIV, tuberculosis (previous, current)) / age 20-39/female | JBI=
11 | 12 estimates Diabetes-Case mortality-HR-AFR-1-0 // Hypertension-Case mortality-HR-AFR-1-0 // Chronic kidney disease-Case mortality-HR-AFR-1-0 // Tuberculosis-Case mortality-HR-AFR-1-0 // HIV-Case mortality-HR-AFR-1-0 // Diabetes-Hospital mortality-HR-AFR-1-0 // Hypertension-Hospital mortality-HR-AFR-1-0 // Chronic kidney disease-Hospital mortality-HR-AFR-1-0 // Respiratory disease-Hospital mortality-HR-AFR-1-0 // Tuberculosis-Hospital Tuberculosis-Hospi | | Eastern Medit | erranean Region | 1 | | | | | | | Al-Sabah;
Kuwait ¹²² | cohort; single-center; 24.
Feb - 7. Apr;
hospitalised individuals
diagnosed with COVID-19 | 1158; median 40
(31-52), nr (nr);
82% | PCR / yes,
obesity categories
described,
definition for
HTN and DM
provided | ICU
admission | Log / model 1 ("obesity model"): age, sex, obesity and overweight, comorbidities (HTN); model 2 ("diabetes model"): age, sex, comorbidities (DM, HTN) / na | NOS
=9 | 5 estimates: Overweight-ICU admission-OR-EMR-1-0 // Obesity/BMI>30-ICU admission-OR-EMR-1-0 // Obesity/BMI>40-ICU admission-OR-EMR-1-0 // Diabetes-ICU admission-OR-EMR-1-0 // Hypertension-ICU admission-OR-EMR-1-0 | | Rastad;
Iran ¹²³ | cohort; multi-center; 20. Feb - 25. Mar;
individuals hospitalised with
COVID-19 diagnosis | 2957; nr (nr),
mean 55 (17);
54% | PCR / no | in-hospital
mortality | Log / model 1: comorbidities (DM, CVD, other comorbidities); model 2: sex, comorbidities (DM, CVD, other comorbidities), model 3: sex, age, comorbidities (DM, CVD, other comorbidities), laboratory values; different models estimated for age groups <65 and >=65: one of the following comorbidities included in the models: DM (with or without other comorbidities), CVD (with or without other comorbidities), DM as single disease, CVD as single disease, CVD or DM, age, sex / age>65 years / female | QUIP
S=
low | 2 estimates Diabetes-Hospital mortality-OR-EMR-1-0 // Cardiovascular disease-Hospital mortality-OR-EMR-1-0 and Analysis of age-stratified estimates | | European Reg | ion | | | | | | | | Al-
Salameh;
France ¹²⁴ | cohort; single-center; nr -
21. Apr; follow-up until 1.
May ; individuals diagnosed
with COVID-19
hospitalised/admitted to ICU | total n=433, n= 326 (model admission ICU); n=370 (model in- hospital mortality); median 72 (nr), nr (nr); 55% | PCR / no | ICU admission, in-hospital mortality (both ICU/non- ICU deaths) | Cox, Log / model ICU admission: age, sex, BMI and comorbidities (DM), laboratory values; model in-hospital mortality: age, sex, laboratory values, comorbidities (DM, CVD) / age numeric / sex na | NOS =6 | 3 estimates:
Cardiovascular disease-Hospital mortality-HR-EUR-2-0 // Diabetes-Hospital mortality-HR-EUR-9-49.7 // Diabetes-ICU admission-OR-EUR-2-0 | | Amit;
Israel ¹²⁵ | case series; multi-center, 13;
5. Mar - 27. April;
individuals diagnosed with
COVID-19 in ICU | 156; median 72
(60-82), nr (nr);
69% | PCR / no | ICU
mortality | Log / age, sex, comorbidities (HTN, DM, IHD), complications, medication, laboratory values, ICU stay / age numeric / male | other
= low | The outcome excluded from the reporting | | Bellan;
Italy ¹²⁶ | cohort; multi-center, 3; 1.
Mar - 28. Apr;
individuals hospitalised with
COVID-19 diagnosis | 1697; median 71
(58-80), nr (nr);
59% | PCR / no | in-hospital
mortality | Log / age, CANCact, obesity, smoking / age <58yo /sex na | NOS
=8 | 2 estimates Cancer/Active-Hospital mortality-OR-EUR-1-0 // Obesity/BMI>30-Hospital mortality-OR-EUR-3-75.5 | | Study | Study design; setting,
number of hospitals;
period;
Study population | Sample size; age
(median (IQR),
mean (SD or CI)
or % in certain
age group(s)); %
of males | Given definition
of COVID-19/
pre-existing
condition (if yes,
see section 2.3
for detail) | Outcomes
relevant
for review | Adjustment method (Regression Model) /
Covariates / Reference age and sex category | Risk
of
bias | Analyses the study participated in [Main meta-analyses reported as: number of the resulted effect estimates the study contributed to; a meta-analysis is described as Condition-Outcome-Measure of association-Region-Total number of studies in the analysis-I ² %] | |--|--|---|--|---|--|--------------------|--| | Berenguer;
Spain ¹²⁷ | cohort; multi-center, 127; nr
- 17. Mar; follow-up until
17. Apr;
individuals hospitalised with
COVID-19 diagnosis | 4035; median
70
(56-80), nr (nr);
0,61 | PCR / yes,
partially,
definitions for
CANC, BMI
provided | in-hospital
mortality | Cox / age, sex, comorbidities (HTN, obesity, CLD/cirrhosis, chronic neurological disorder, active CANC, DEM), symptoms, laboratory values / age 0-49 / female | NOS
=7 | 6 estimates Cancer/Active-Hospital mortality-HR-EUR-3-25.6 // Neurological disease-Hospital mortality-HR-EUR-2-0 // Chronic liver/Cirrhosis-Hospital mortality-HR-EUR-1-0 // Dementia-Hospital mortality-HR-EUR-3-75.1 // Hypertension-Hospital mortality-HR-EUR-8-58 // Obesity/BMI>30-Hospital mortality-HR-EUR-6-89.2 | | Bezzio;
Italy ¹²⁸ | cohort; multi-center, 24; 11.
Mar - 29. Mar; individuals
with inflammatory bowel
disease with diagnosed
COVID-19 | 79; median 45
(18-80), nr (nr);
0,66 | PCR / yes,
definition for IBD
provided, use of
CCI | case
mortality | Log / age, CCI score, active IBD, UC, corticosteroids, antitumor necrosis factor / age <61 / sex na | NOS
=8 | Analysis of evidence for specific population groups - individuals with inflammatory bowel | | Bianchetti;
Italy ¹²⁹ | cohort; single-center; 22.
Feb - 8. Apr;
individuals hospitalised with
COVID-19 diagnosis | 627; nr (nr), mean
71 (13); 47% | PCR / yes,
partially, some
information on
the identification
of dementia | in-hospital
mortality | Log / age, sex, comorbidities (DEM) / age 1-year increase / male | NOS
=7 | 1 estimate Dementia-Hospital mortality-OR-EUR-4-49.7 | | Borghesi;
Italy ¹³⁰ | cohort; single-center; 4. Mar
- 24. Mar;
individuals hospitalised with
COVID-19 diagnosis | 302; median 67
(57-77), nr (nr);
64% | PCR / no | in-hospital
mortality | Log / Brixia score, age, comorbidities (immun) / na | NOS
=7 | 1 estimate Immunosuppression-Hospital mortality-OR-EUR-1-0 | | Burn;
Spain ¹³¹
pre-print | cohort; electronic database;
1. Mar - 6. May;
individuals with COVID-19
diagnosis as recorded in
primary care records
covering >80% of the
population in Catalonia,
Spain | model diagnosed
to death (case
mortality):2794
hospitalised to
death (In-hospital
mortality):2791;
diagnosed to
hospitalisation
(hospitalisation):
9437; median 72
(58-81), nr (nr);
56% | PCR / yes,
partially, BMI;
CCI was used,
information on
obesity and
autoimmune
condition | hospitalisati
on, in-
hospital
mortality,
case
mortality | Cox / age, sex, inclusion of 1 comorbidity or number of comorbidities (comorbidities: Auto, CKD, COPD, DEM, cardiac diseases, hyperlipidemia, HTN, CANC, obesity, DM, number of Charlson comorbidities 1:0, 2:0,3+:0) / na | NOS =9 | 30 estimates Diabetes-Hospital mortality-HR-EUR-9-49.7 // Dementia-Hospital mortality-HR-EUR-3-75.1 // Hypertension-Hospital mortality-HR-EUR-8-58 // Obesity/BMI>-30-Hospital mortality-HR-EUR-6-89.2 // Autoimmune condition-Hospital mortality-HR-EUR-1-0 // Chronic kidney disease-Hospital mortality-HR-EUR-9-94.5 // COPD-Hospital mortality-HR- EUR-1-0 // Heart disease-Hospital mortality-HR-EUR-2-33.8 // Dyslipidemia or hyperlipidemia-Hospital mortality-HR- EUR-1-0 // Cancer-Hospital mortality-HR-EUR-3-32.1 // Autoimmune condition-Hospitalisation-HR-EUR-1-0 // Chronic kidney disease-Hospitalisation-HR-EUR-2-76.3 // COPD-Hospitalisation-HR-EUR-2-94.1 // Dementia-Hospitalisation- HR-EUR-2-93.4 // Diabetes-Hospitalisation-HR-EUR-2-44.2 // Heart disease-Hospitalisation-HR-EUR-1-0 // Hypertension-Hospitalisation-HR-EUR-2-80.1 // Desity/BMI>30-Hospitalisation-HR-EUR-2-0 // Autoimmune condition-Case mortality-HR-EUR-1-0 // Chronic kidney disease-Case mortality-HR-EUR-2-0 // COPD-Case mortality-HR-EUR-2-0 // Dementia-Case mortality-HR-EUR-2-0 // Diabetes-Case mortality-HR-EUR-2-16.8 // Heart disease-Case mortality-HR-EUR-2-48.6 // Cancer-Case mortality-HR-EUR-2-0 // Obesity/BMI>30-Hospitalisation-HR-EUR-2-0 // EUR-2-0 // Desity-HR-EUR-2-0 / | | Busetto;
Italy ¹³² | cohort; single-center; 23.
Mar - 11. Apr;
individuals hospitalised with
COVID-19 diagnosis and
severe acute respiratory
syndrome | 92; nr (nr), mean
70 (13); 62% | PCR / yes,
partially, only on
obesity | in-hospital
mortality | Log / age, sex, BMI, comorbidities (Resp, DM, DEM) / age numeric / male | NOS
=6 | 3 estimates Dementia-Hospital mortality-OR-EUR-4-49.7 // Diabetes-Hospital mortality-OR-EUR-5-19.6 // Respiratory disease-Hospital mortality-OR-EUR-2-30.7 | | Cariou;
France ¹³³ | cohort; multi-center, 53; 10.
Mar - 31. Mar;
individuals with diabetes
hospitalised with COVID-19
diagnosis | 1317; nr (nr),
mean 70 (13);
65% | PCR / no | in-hospital
mortality
on day 7,
intubation
and/or
death | Log / age, sex, comorbidities (HTN, CHF, CANCact), complications, treatment / age 1SD / male | NOS
=8 | Analysis of evidence for specific population groups - diabetes | | Carter;
UK,
Italy ¹³⁴ | cohort; multi-center, 10; 27.
Feb - 28. Apr;
individuals hospitalised with
COVID-19 diagnosis | 1564; median 74
(61-83), nr (nr);
58% | PCR (95.1%)
/clinical diagnosis
(4.9%) / no | in-hospital
mortality | Cox / age, sex, comorbidities (DM, CAD, HTN, reduced renal function) smoking, location of infection aquisition, laboratory values, Clinical Frailty Scale / age<65 / female | other
= low | 4 estimates Diabetes-Hospital mortality-HR-EUR-9-49.7 // Hypertension-Hospital mortality-HR-EUR-8-58 // Chronic kidney disease-Hospital mortality-HR-EUR-9-94.5 // Coronary artery disease-Hospital mortality-HR-EUR-4-83.3 | | Study | Study design; setting,
number of hospitals;
period;
Study population | Sample size; age
(median (IQR),
mean (SD or CI)
or % in certain
age group(s)); %
of males | Given definition
of COVID-19/
pre-existing
condition (if yes,
see section 2.3
for detail) | Outcomes
relevant
for review | Adjustment method (Regression Model) /
Covariates / Reference age and sex category | Risk
of
bias | Analyses the study participated in [Main meta-analyses reported as: number of the resulted effect estimates the study contributed to; a meta-analysis is described as Condition-Outcome-Measure of association-Region-Total number of studies in the analysis-I ² %] | |---|---|--|--|---|--|---------------------|---| | Caussy;
France ¹³⁵ | cohort; single-center; nr -27.
Mar;
individuals hospitalised with
COVID-19 diagnosis | 340; 68%>=65yrs;
58% | PCR / no | ICU
admission
vs non-
ICU ward | Log / age, sex, obesity / na | NOS
>=3 | 1 estimate Obesity/BMI>30-ICU admission-OR-EUR-2-56.2 | | Ciardullo;
Italy ¹³⁶ | cohort; single-center; 22.
Feb - 15. May;
individuals hospitalised with
COVID-19 diagnosis | 339; nr (nr), mean 72 (14); 65% | PCR / no | in-hospital
mortality | Log / age, sex, comorbidities (HTN, CKD, CVD, COPD), another model with additional laboratory values / age 1-year increase / male | NOS
>=5 -
<=8 | 5 estimates
Chronic kidney disease-Hospital mortality-RR-EUR-1-0 // COPD-Hospital mortality-RR-EUR-1-0 // Cardiovascular
disease-Hospital mortality-RR-EUR-1-0 // Diabetes-Hospital mortality-RR-EUR-1-0 // Hypertension-Hospital mortality-
RR-EUR-1-0 | | Ciceri;
Italy ¹³⁷ | cohort; single-center; 25.
Feb - 24. Mar;
individuals hospitalised with
COVID-19 diagnosis | 410; median 65
(56-75), nr (nr);
73% | PCR / no | in-hospital
mortality | Cox / age, sex, ethnicity, presence of comorbidity, BMI, comorbidities (HTN, DM, CAD, CKD, CANCact), laboratory values radiographic assessment of lung Edema (RALE) score / age <65 / female | NOS
=8 | 2 estimates Cancer/Active-Hospital mortality-HR-EUR-3-25.6 // Coronary artery disease-Hospital mortality-HR-EUR-4-83.3 | | Conversan
o; Italy ¹³⁸ | cohort; single-center; 27.
Feb - 17. Mar;
individuals hospitalised with
COVID-19 diagnosis | 191; nr (nr), mean
63 (15); 69% | PCR / yes,
partially, heart
failure and
chronic kidney
disease | in-hospital
mortality | Cox / model 1: age, comorbidities (HTN, CHF, DM), ACE inhibitor/ARBs; model 2: age, comorbidities (CKD, COPD, CANC), betablocker / age numeric / sex na | NOS
=8 | 2 estimates Chronic kidney disease-Hospital mortality-HR-EUR-9-94.5 // Heart failure-Hospital mortality-HR-EUR-2-80.9 | | Di
Castelnuov
o; Italy ¹³⁹ | cohort; multi-center, 30; 19.
Feb - 23. Mar;
individuals hospitalised with
COVID-19 diagnosis | 3894, Complete-
case 3454; median
67 (nr), nr (nr);
62% | PCR / yes,
partially, only on
obesity and CKD | in-hospital
mortality | Cox / age, sex, comorbidities (HTN, DM, Myo, CHF, CANC, Resp, Obesity), smoking,
CKD stage; results for 3 types of imputation (complete-case (3) is included in meta-analysis); model estimated for age groups 18-64, 65-74 and >=75 (same comorbidites as in main model) / age 18-44 / female | NOS
=9 | 8 estimates Diabetes-Hospital mortality-HR-EUR-9-49.7 // Hypertension-Hospital mortality-HR-EUR-8-58 // Obesity/BMI>30- Hospital mortality-HR-EUR-6-89.2 // Chronic kidney disease-Hospital mortality-HR-EUR-9-94.5 // Cancer-Hospital mortality-HR-EUR-3-32.1 // Heart failure-Hospital mortality-HR-EUR-2-80.9 // Infarction-Hospital mortality-HR-EUR- 1-0 // Respiratory disease-Hospital mortality-HR-EUR-4-0 and Analysis of age-stratified estimates | | Docherty;
UK ¹⁴⁰ | cohort; multi-center, 208; 6.
Feb - 19. Apr;
individuals hospitalised with
COVID-19 diagnosis | 15194; median 73
(58–82), nr (nr);
60% | PCR / yes,
partially, since
CCI was used | in-hospital
mortality | Cox / age, sex, comorbidities (CANCact, cardiac diseases, neurological, CKD, CLD, DEM, DM, obesity, Resp) / age<50; 10-year increment for ORs /male | NOS
=8 | 9 estimates Diabetes-Hospital mortality-HR-EUR-9-49.7 // Neurological disease-Hospital mortality-HR-EUR-2-0 // Dementia-Hospital mortality-HR-EUR-3-75.1 // Obesity/BMI>-30-Hospital mortality-HR-EUR-6-89.2 // Chronic kidney disease-Hospital mortality-HR-EUR-9-94.5 // Heart disease-Hospital mortality-HR-EUR-2-33.8 // Cancer-Hospital mortality-HR-EUR-3-32.1 // Respiratory disease-Hospital mortality-HR-EUR-4-0 // Chronic liver disease-Hospital mortality-HR-EUR-1-0 | | Galloway;
UK ¹⁴¹ | cohort; 2 hospitals; 1. Mar -
17. Apr;
critically ill patients
diagnosed with COVID-19
admitted to hospital | 1157; median 71
(57-82), nr (nr);
58% | PCR / yes,
partially, on
chronic lung
disease | admission
to ICU, in-
hospital
mortality | Competing risk model / models death and critical care: sex, age, comorbidities (CANCact, CKD, DM, HTN, IHD, chronic lung disease) / age numeric / female | NOS
=8 | 12 estimates Diabetes-Hospital mortality-HR-EUR-9-49.7 // Cancer/Active-Hospital mortality-HR-EUR-3-25.6 // Hypertension-Hospital mortality-HR-EUR-8-58 // Chronic kidney disease-Hospital mortality-HR-EUR-9-94.5 // Coronary artery disease-Hospital mortality-HR-EUR-4-0 // Cancer/Active-ICU admission-HR-EUR-1-0 // Chronic kidney disease-ICU admission-HR-EUR-2-86.1 // Diabetes-ICU admission-HR-EUR-2-0 // Hypertension-ICU admission-HR-EUR-2-0 // Coronary artery disease-ICU admission-HR-EUR-1-0 // Respiratory disease-ICU admission-HR-EUR-1-0 | | Study | Study design; setting,
number of hospitals;
period;
Study population | Sample size; age
(median (IQR),
mean (SD or CI)
or % in certain
age group(s)); %
of males | Given definition
of COVID-19/
pre-existing
condition (if yes,
see section 2.3
for detail) | Outcomes
relevant
for review | Adjustment method (Regression Model) /
Covariates / Reference age and sex category | Risk
of
bias | Analyses the study participated in [Main meta-analyses reported as: number of the resulted effect estimates the study contributed to; a meta-analysis is described as Condition-Outcome-Measure of association-Region-Total number of studies in the analysis-I ² %] | |--------------------------------------|---|---|--|---|--|--------------------|--| | Geretti;
UK ¹⁴² | cohort; multi-center, 207;
17. Jan - 18. Jun; follow-up
ended at death, or 3 days
after discharge to palliative
care or at day 28 for those
remaining alive as an
inpatient;
individuals hospitalised with
COVID-19 diagnosis | 47592; HIV
positive: median
56 (49-62), nr (nr);
HIV negative:
median 74 (60-
68), nr (nr); 66%
HIV positive
group, 57% HIV-
negative group | PCR (90.5%)
/clinical diagnosis
(9.5%) / yes,
partially, only for
HIV | in-hospital
mortality
(by day
28);
admission
to critical
care | Cox, Log / model Cox: sex, age, ethnicity, other: indeterminate/probable hospital acquisition of COVID-19, comorbidities at admission (HIV, chronic neurological disorder, chronic haematological disease, chronic cardiac disease, chronic pulmonary disease, chronic renal disease, DM, obesity, DEM, liver disease (mild, moderate or severe), CANC), baseline date (date of symptom start or positive PCR test); Model LOG: sex, age, ethnicity, baseline date, indeterminate/probable hospital acquisition of COVID-19, and 10 comorbidities besides HIV-status | JBI=9 | 2 estimates HIV-Hospital mortality-HR-EUR-1-0 // HIV-ICU admission-OR-EUR-1-0 | | Giacomelli
; Italy ¹⁴³ | cohort; single-center; 21.
Feb - 19. Mar; follow-up
until 20. Apr;
individuals hospitalised with
COVID-19 diagnosis | 233; median 61
(50-72), nr (nr);
70% | PCR / yes | in-hospital
mortality | Cox / age, sex, comorbidities (obesity, age,
unadjusted Charlson comorbidity index), anti-
hypertensive agent, COVID-19 disease severity,
anaemia, laboratory values / age per 10 years
more / female | NOS
=7 | 1 estimate Obesity/BMI>30-Hospital mortality-HR-EUR-6-89.2 | | Goicoeche
a; Spain ¹⁴⁴ | cohort; single-center; 12.
Mar - 10. Apr;
individuals hospitalised with
COVID-19 diagnosis | 36; nr (nr), mean
71 (12); 64% | PCR / NA (no comorbidity in model) | in-hospital
mortality | Cox / 5 models: 1) age, haemodialysis time; 2) and 3) age, laboratory findings; 4) and 5) age, treatment / age 1-year increase / sex na | NOS
=7 | Analysis of evidence for specific population groups – patients receiving haemodialysis | | Grasselli;
Italy ¹⁴⁵ | cohort; ICUs; 20. Feb - 22.
Apr; follow-up until 30.
May;
critically ill individuals with
COVID-19 in ICU | 3988; median 63
(56-69), nr (nr);
80% | PCR / yes | ICU
mortality | Cox / age, sex, laboratory values at admission, respiratory support, medication/therapy, comorbidities (HTN, hypercholesterolemia, cardiac diseases, DM, CANC, COPD) / age in 10-y increments / female | NOS
=9 | The outcome was excluded from the reporting | | Halasz;
Italy ¹⁴⁶ | cohort; single-center; Feb –
Apr;
critically ill individuals with
COVID-19 in ICU | 242; median 64
(56-71), nr (nr);
80% | PCR / yes,
partially, only for
obesity | ICU
mortality | Log / age, sex, BMI, comorbidities (HTN, CVD, COPD, DM) / na | NOS
=7 | The outcome was excluded from the reporting | | Hewitt;
Europe ¹⁴⁷ | cohort; multi-center, 11; 27.
Feb - 28. Apr;
individuals hospitalised with
COVID-19 diagnosis | 1564; median 74
(61-83), nr (nr);
58% | PCR /clinical
diagnosis (%
unknown) / yes,
partially, only for
reduced renal
function | in-hospital
mortality | Cox, Log / all models: age, sex, smoking status, comorbidities (DM, CAD, HTN, reduced renal function (eGRF laboratory value)) and clinical frailty score, laboratory values / age <65 / female | NOS
=9 | 8 estimates Diabetes-Hospital mortality-HR-EUR-9-49.7 // Hypertension-Hospital mortality-HR-EUR-8-58 // Chronic kidney disease-Hospital mortality-HR-EUR-9-94.5 // Coronary artery disease-Hospital mortality-HR-EUR-4-83.3 // Diabetes-Hospital mortality-OR-EUR-3-55.8 // Hypertension-Hospital mortality-OR-EUR-3-55.8 // Hypertension-Hospital mortality-OR-EUR-4-24.6 // Chronic kidney disease-Hospital mortality-OR-EUR-4-0 | | Khalil;
UK ¹⁴⁸ | cohort; single-center; 7. Mar - 7. Apr; follow-up until 8. May; individuals hospitalised with COVID-19 diagnosis | 220; nr (nr), mean
67 (65–69); 59% | PCR / NA (nr of
comorbidities was
included in model
only) | in-hospital
mortality | Cox / age, sex, number of comorbidities / age nr / female | NOS
=6 | Risk "number of comorbidities" was excluded from meta-analyses | | Lee (a);
UK ¹⁴⁹ | cohort; multi-center, 55; 18.
Mar - 26. Apr;
individuals with active
cancer diagnosed with
COVID-19 | 800; median 69
(59-76), nr (nr);
56% | PCR / yes,
partially, for
CANC | case
mortality | Log / age, sex, comorbidities (DM, HTN, COPD, other) / na | NOS
=7 | Analysis of evidence for specific population groups – patients with cancer | | Study | Study design; setting,
number of hospitals;
period;
Study population | Sample size; age
(median (IQR),
mean (SD or CI)
or % in certain
age group(s)); %
of males | Given definition
of COVID-19/
pre-existing
condition (if yes,
see
section 2.3
for detail) | Outcomes
relevant
for review | Adjustment method (Regression Model) /
Covariates / Reference age and sex category | Risk
of
bias | Analyses the study participated in [Main meta-analyses reported as: number of the resulted effect estimates the study contributed to; a meta-analysis is described as Condition-Outcome-Measure of association-Region-Total number of studies in the analysis-I ² %] | |---|--|--|--|------------------------------------|--|--------------------|---| | Lee (b);
UK ¹⁵⁰ | cohort; multi-center, 66; 18.
Mar - 18. May;
individuals with active
cancer diagnosed with
COVID-19 | 1044; median 70
(60-77), nr (nr);
57% | PCR / ICD-10 for
cancer type
(variable of
interest); | case
mortality | Log / tumor subtype adjusted by age and sex / na | NOS
=8 | Analysis of evidence for specific population groups – patients with cancer | | Merzon;
Israel ¹⁵¹ | cohort; electronic database;
1. Feb - 30. Apr;
health services members
with COVID-19 | 782; nr (nr), mean
36 (CI: 34-37);
49% | PCR / no,
however,
information
provided that
comorbidities
were selected
based on ICD-10 | hospitalisa
tion | Log / age (<50), sex, comorbidities (depression, schizophrenia, DEM, DM, HTN, CVD, Resp), BMI, smoking, laboratory values / na | NOS
=8 | 8 estimates Depression-Hospitalisation-OR-EUR-2-77 // Psychiatric disorder-Hospitalisation-OR-EUR-2-15.6 // Dementia-Hospitalisation-OR-EUR-3-50 // Diabetes-Hospitalisation-OR-EUR-3-0 // Hypertension-Hospitalisation-OR-EUR-3-0 // Cardiovascular disease-Hospitalisation-OR-EUR-2-12.3 // Respiratory disease-Hospitalisation-OR-EUR-2-76.4 // Obesity/BMI>30-Hospitalisation-OR-EUR-3-96.6 | | Passamonti
; Italy ¹⁵² | cohort; multi-center, 66; 25.
Feb - 18. May;
individuals with
haematological malignancy
diagnosed with COVID-19
admitted to hospital | 536, 451
hospitalised;
median 68 (58-
77), nr (nr); 63% | PCR / yes, on
type of
haematological
malignancy and
CCI | case
mortality | Cox / age, sex, CCI, haematological malignancy, types (vs myeloproliferative neoplasms), time since diagnosis, COVID-19 severity / age numeric / male | JBI=7 | Analysis of evidence for specific population groups – patients with cancer | | Perez-
Guzman;
UK ¹⁵³ | cohort; multi-center, 3; 25.
Feb - 5. Apr; follow-up until
1. May;
individuals hospitalised with
COVID-19 diagnosis | 614; median 69
(54–79), nr (nr);
62% | PCR / yes,
defined by ECI
score | in-hospital
mortality | Log / for each comorbidity age-adjusted model:
comorbidities: ART, AST, CHF, CKD,
CLD/Cirrhosis, CLD/noncirrhotic, CRB, DEM,
DM, DVT/PE, haematological malignancy, HIV,
HTN, IHD, solid malignancy, COPD, any
comorbidity / age numeric / sex na | JBI=8
6% | 16 estimates Dementia-Hospital mortality-OR-EUR-4-49.7 // Diabetes-Hospital mortality-OR-EUR-5-19.6 // Coronary artery disease-Hospital mortality-OR-EUR-3-55.8 // Hypertension-Hospital mortality-OR-EUR-4-24.6 // Chronic kidney disease-Hospital mortality-OR-EUR-4-0 // Arrhythmia-Hospital mortality-OR-EUR-2-0 // Asthma-Hospital mortality-OR-EUR-1-0 // Heart failure-Hospital mortality-OR-EUR-2-0 // Chronic liver/Cirrhosis-Hospital mortality-OR-EUR-1-0 // Chronic liver/Non-cirrhotic-Hospital mortality-OR-EUR-1-0 // Cancer/Hematol-Hospital mortality-OR-EUR-3-79.8 // V.thromboembolism-Hospital mortality-OR-EUR-1-0 // Cancer/Hematol-Hospital mortality-OR-EUR-2-64.8 // HIV-Hospital mortality-OR-EUR-1-0 // Cancer/Solid-Hospital mortality-OR-EUR-1-0 // COPD-Hospital mortality-OR-EUR-1-1-0 | | Pinato;
Europe ¹⁵⁴ | cohort; multi-center, 19; 26.
Feb - 1. Apr; follow-up until
11. May;
patients with COVID-19 and
cancer identified from
registry, treated as inpatients
(ward, ICU) and outpatients | 890; median 68
(13), nr (nr); 56% | PCR / only for tumor status | case
mortality | Cox / age, number comorbidities (categorical, >=2 vs 0-1), comorbidities: CANCact "tumor status" (active malignancy vs remission/no measurable disease), severity of cancer: tumor stage; drugs: anticancer therapy / age<65 / sex na | NOS
=7 | Analysis of evidence for specific population groups – patients with cancer | | Regina;
Switzerlan
d ¹⁵⁵ | cohort; single-center; 1. Mar
- 25. Mar; 14 day follow-up;
individuals hospitalised with
COVID-19 diagnosis | 145; median 62
(52-74), nr (nr);
62% | PCR / yes,
partially, CCI was
used for number
of comorbidities | intubation | Log / age, sex, comorbidities (HTN, COPD), symptoms: more than 7 days of symptoms, laboratory values: dyspnea, temperature, heart rate, qSOFA score, bilateral radiological infiltrate, acute kidney injury on admission, Creactive protein / age numeric / female | NOS
=9 | 2 estimates
COPD-Intubation-OR-EUR-1-0 // Hypertension-Intubation-OR-EUR-2-84.2 | | Study | Study design; setting,
number of hospitals;
period;
Study population | Sample size; age
(median (IQR),
mean (SD or CI)
or % in certain
age group(s)); %
of males | Given definition
of COVID-19/
pre-existing
condition (if yes,
see section 2.3
for detail) | Outcomes
relevant
for review | Adjustment method (Regression Model) /
Covariates / Reference age and sex category | Risk
of
bias | Analyses the study participated in [Main meta-analyses reported as: number of the resulted effect estimates the study contributed to; a meta-analysis is described as Condition-Outcome-Measure of association-Region-Total number of studies in the analysis-I ² %] | |---|--|--|--|---|---|--------------------
--| | Reilev;
Denmark ¹⁵ | population-based study;
electronic database; 27. Feb
- 19. May;
individuals community-
managed / hospitalised with
COVID-19 diagnosis | n= 9519 for case
mortality; 2090
hospital mortality;
9519 for
hospitalisation;
hospitalized:
median 71 (56-
80), nr (nr); 54% | PCR / yes,
comorbidities
defined with
ICD-10 codes | hospitalisa
tion, in-
hospital
mortality,
case
mortality | Log / age, sex, 1 of the following comorbidities:
ART, CANC, CHF, CKD, CLD, CRB, DEM,
DM, HTN, IHD, obesity, Organ, Resp, Rheuma
/ age 50-59 / female | NOS =8 | 45 estimates Obesity/BMI>30-Hospital mortality-OR-EUR-3-75.5 // Dementia-Hospital mortality-OR-EUR-4-49.7 // Diabetes-Hospital mortality-OR-EUR-5-19.6 // Respiratory disease-Hospital mortality-OR-EUR-2-30.7 // Coronary artery disease-Hospital mortality-OR-EUR-3-5.8 // Hypertension-Hospital mortality-OR-EUR-2-0.7 // Coronary artery disease-Hospital mortality-OR-EUR-3-0.8 // Cancer-Hospital mortality-OR-EUR-3-0.0 // Cerebrovascular/Stroke-Hospital mortality-OR-EUR-2-0 // Heart failure-Hospital mortality-OR-EUR-1-0 // Chronic liver disease-Hospital mortality-OR-EUR-1-0 // Organ transplant recipients-Hospital mortality-OR-EUR-1-0 // Chronic liver disease-Hospital mortality-OR-EUR-1-0 // Psychiatric disorder-Hospitalisation-OR-EUR-1-0 // Psychiatric disorder-Hospitalisation-OR-EUR-1-0 // Psychiatric disorder-Hospitalisation-OR-EUR-3-50 // Diabetes-Hospitalisation-OR-EUR-3-0 // Respiratory disease-Hospitalisation-OR-EUR-3-0 // Respiratory disease-Hospitalisation-OR-EUR-3-0 // Cancer-Hospitalisation-OR-EUR-3-0 // Phaet failure-Hospitalisation-OR-EUR-3-0 // Cancer-Hospitalisation-OR-EUR-2-0 // Coronary artery disease-Hospitalisation-OR-EUR-2-38.8 // Cerebrovascular/Stroke-Hospitalisation-OR-EUR-3-0 // Psychiatric disorder-Case mortality-OR-EUR-1-0 // Arrhythmia-Case mortality-OR-EUR-1-0 // Cancer-Case mortality-O | | Rivera-
Izquierdo;
Spain ¹⁵⁷ | case series; single-center;
16. Mar - 10. Apr;
individuals hospitalised with
COVID-19 diagnosis | 238; nr (nr), mean
65 (15); 55% | PCR / no | in-hospital
mortality | Cox / 3 models: 1) adjustment by age; 2) age,
basic activities of daily life dependence, DM,
ageusia, laboratory values, interstitial opacities;
3) age, DM, laboratory values. Model 1 is
included / age per unit increase / sex na | NOS
=5 | 5 estimates Cardiovascular disease-Hospital mortality-HR-EUR-2-0 // Diabetes-Hospital mortality-HR-EUR-9-49.7 // Hypertension-Hospital mortality-HR-EUR-8-58 // Chronic kidney disease-Hospital mortality-HR-EUR-9-94.5 // Respiratory disease-Hospital mortality-HR-EUR-4-0 | | Rossi, A;
Italy ¹⁵⁸ | cohort; single-center; 8. Mar
- 30. Mar;
critically ill individuals
hospitalised with COVID-19
diagnosis | 95; nr (nr), mean 62 (12); 81% | PCR / yes,
partially, for BMI
categories /
obesity | in-hospital
mortality
(28 day
survival) | Cox / age, sex, smoking status, comorbidities
(obesity, coronary heart disease, CHF, HTN,
DM, COPD, chronic renal failure, Immun,
immunodeficiency or immunosuppressed state
and CANC) / na | NOS
=8 | The outcome was excluded from the reporting | | Rossi, P;
Italy ¹⁵⁹ | cohort; population-based;
27. Feb - 2. Apr;
symptomatic patients who
tested positive for COVID-
19 | 2143 for
hospitalisation,236
2 for mortality (for
models including
single
comorbidities);
1866 for
hospitalization for
model w CCI and
2025 for case
mortality for
model with cci; nr
(nr), mean 63 (nr);
50% | PCR / no | case
mortality,
hospitaliza
tion | Multivariate proportional hazard models / 2 models with age, sex and one of the following: ART, CANC, CHF, CKD, COPD, DEM, DM, dyslipidemia, HTN, IHD, obesity, vascular disease; 2 models with sex, age, calendar period, time from symptom to diagnosis, place of birth, CCI / na | NOS
=9 | 24 estimates Chronic kidney disease-Hospitalisation-HR-EUR-2-76.3 // COPD-Hospitalisation-HR-EUR-2-94.1 // Dementia-Hospitalisation-HR-EUR-2-93.4 // Diabetes-Hospitalisation-HR-EUR-2-44.2 // Hypertension-Hospitalisation-HR-EUR-2-74.7 // Dyslipidemia or hyperlipidemia-Hospitalisation-HR-EUR-2-50.7 // Cancer-Hospitalisation-HR-EUR-1-0 // Coronary artery disease-Hospitalisation-HR-EUR-1-0 // Heart failure-Hospitalisation-HR-EUR-1-0 // Cardiovascular disease-Hospitalisation-HR-EUR-1-0 // Chronic kidney disease-Case mortality-HR-EUR-2-0 // COPD-case mortality-HR-EUR-2-0 // Dementia-Case mortality-HR-EUR-2-0 // Pomentia-Case mortality-HR-EUR-2-0 // Pomentia-Case mortality-HR-EUR-2-0 // Cardiovascular disease-Hospitalisation-HR-EUR-1-0 // Cardiovascular disease-Case mortality-HR-EUR-1-0 | | Study | Study design; setting,
number of hospitals;
period;
Study population | Sample size; age
(median (IQR),
mean (SD or CI)
or % in certain
age group(s)); %
of males | Given definition
of COVID-19/
pre-existing
condition (if yes,
see section 2.3
for detail) | Outcomes
relevant
for review | Adjustment method (Regression Model) /
Covariates / Reference age and sex category | Risk
of
bias | Analyses the study participated in [Main meta-analyses reported as: number of the resulted effect estimates the study contributed to; a meta-analysis is described as Condition-Outcome-Measure of association-Region-Total number of studies in the analysis-I ² %] | |--|---|--|---|---|---|--------------------
--| | Rottoli;
Italy ¹⁶⁰ | cohort; single-center; 1. Mar - 20. Apr; follow-up until 27. Apr; individuals hospitalised with COVID-19 diagnosis | 482; nr (nr), mean 66 (17); 63% | PCR / BMI is
defined obesity
>=30; no
definition of other
comorbidities | In-hospital
mortality,
ICU
admission | Cox, Log /
age, sex, comorbidities (CKD, CRB, DM, HTN,
obesity) / age<60 / female | NOS
=6 | 20 estimates Diabetes-Hospital mortality-HR-EUR-9-49,7 // Hypertension-Hospital mortality-HR-EUR-8-58 // Obesity/BMI>30-Hospital mortality-HR-EUR-6-89.2 // Chronic kidney disease-Hospital mortality-HR-EUR-9-94.5 // Cerebrovascular/Stroke-Hospital mortality-HR-EUR-1-0 // Chronic kidney disease-ICU admission-HR-EUR-2-86.1 // Diabetes-ICU admission-HR-EUR-2-0 // Hypertension-ICU admission-HR-EUR-2-0 // Obesity/BMI>30-ICU admission-HR-EUR-1-0 // Cerebrovascular/Stroke-ICU admission-OR-EUR-2-0 // Obesity/BMI>30-ICU admission-OR-EUR-2-56.2 // Cerebrovascular/Stroke-ICU admission-OR-EUR-1-0 // Hypertension-ICU admission-OR-EUR-1-0 // Chronic kidney disease-ICU admission-OR-EUR-1-0 // Obesity/BMI>30-Hospital mortality-OR-EUR-3-75.5 // Diabetes-Hospital mortality-OR-EUR-5-19.6 // Hypertension-Hospital mortality-OR-EUR-3-79.8 | | Russell;
UK ¹⁶¹ | cohort; single-center; 29.
Feb - 12. May;
cancer patients with a
confirmed COVID-19
diagnosis | 156; nr (nr), mean
65 (15); 58% | PCR / yes,
partially, for
cancer type yes,
(nr of
comorbidities-
com. Are listed
but not defined) | case
mortality | Cox / Effects of comorbidities are adjusted for age, deprivation Index, ethnicity, sex, smoking / age<60 / male | NOS
=7 | Analysis of evidence for specific population groups – patients with cancer | | Sanchez-
Pina;
Spain ¹⁶² | case-control; single-center;
7. Mar - 7. Apr;
individuals hospitalised with
COVID-19 diagnosis | cases: 39,
controls: 53;
cases: nr (nr),
mean 65 (36-88);
cases: 59% | PCR / yes,
haematological
malignancies are
listed | in-hospital
mortality | Log / age, haematological disease / age<70 / sex na | NOS
=6 | 1 estimate Cancer/Hematol-Hospital mortality-OR-EUR-2-64.8 | | Sapey;
UK ¹⁶³ | cohort; single-center; 10.
Mar -17. Apr;
individuals hospitalised with
COVID-19 diagnosis | 1448; median 68
(52-80), nr (nr);
56% | PCR / no | in-hospital
mortality | Cox / age, sex, comorbidity counts, deprivation / age z-score / female | NOS
=9 | Risk "comorbidity counts" was excluded from meta-analyses | | Shah, V;
UK ¹⁶⁴ | cohort; single-center; 13.
Mar - 5. May;
individuals hospitalised with
COVID-19 diagnosis | 1183; median 71
(57-82), nr (nr);
58% | PCR / yes, on
malignancies
(supplementary
results) | in-hospital
mortality | Cox /age, sex, haematological malignancy / na | JBI=8 | 1 estimate Cancer/Hematol-Hospital mortality-HR-EUR-1-0 | | Simonnet;
France ¹⁶⁵ | cohort; single-center; 27.
Feb - 5. Apr;
individuals with COVID-19
diagnosis admitted to ICU | 124; median 60
(51-70), nr (nr);
73% | PCR / yes,
partially, only for
BMI categories
not for any other
comorbidities | intubation | Log / age, sex, comorbidities (DM, HTN, dyslipidemia) and BMI categories / age numeric / female | NOS
=8 | 5 estimates Hypertension-Intubation-OR-EUR-2-84.2 // Obesity/BMI>30-Intubation-OR-EUR-1-0 // Overweight-Intubation-OR-EUR-1-0 // Diabetes-Intubation-OR-EUR-1-0 // Dyslipidemia or hyperlipidemia-Intubation-OR-EUR-1-0 | | Sisó-
Almirall;
Spain ¹⁶⁶ | case series; multi-center, 4;
29. Feb - 4. Apr;
hospitalised individuals
diagnosed with COVID-19 | 322; nr (nr), mean 57 (18); 50% | PCR / no | hospitalisa
tion | Log / age and sex adjusted models with the following comorbidities (one per model): Alzheimer disease, ART, AST, Auto, CANC, CKD, CLD, COPD, CRB, CVD, depression, DM, dyslipidemia, HTN, obesity, thyroid alterations / na | NOS
=7 | 15 estimates Depression-Hospitalisation-OR-EUR-2-77 // Dementia-Hospitalisation-OR-EUR-3-50 // Diabetes-Hospitalisation-OR-EUR-3-0 // Hypertension-Hospitalisation-OR-EUR-3-0 // Cardiovascular disease-Hospitalisation-OR-EUR-2-12.3 // Obesity/BMI>-30-Hospitalisation-OR-EUR-3-96.6 // Arrhythmia-Hospitalisation-OR-EUR-2-0 // Cancer-Hospitalisation-OR-EUR-2-67 // Chronic kidney disease-Hospitalisation-OR-EUR-2-88.7 // Chronic liver disease-Hospitalisation-OR-EUR-2-88.8 // Cerebrovascular/Stroke-Hospitalisation-OR-EUR-2-0 // Asthma-Hospitalisation-OR-EUR-1-0 // Autoimmune condition-Hospitalisation-OR-EUR-1-0 // COPD-Hospitalisation-OR-EUR-1-0 // Dyslipidemia -Hospitalisation-OR-EUR-1-0 -Hosp | | Wendel
Garcia;
Europe ¹⁶⁷ | cohort; multi-center, 54; nr -
22. Apr;
critically ill patients with
COVID-19 in Europe as
captured in registry | 639; nr (nr), mean
63 (53-71); 75% | PCR / no | ICU
mortality | Cox / laboratory values and comorbidities (IHD) / na | NOS
=7 | The outcome was excluded from the reporting | | Study | Study design; setting,
number of hospitals;
period;
Study population | Sample size; age
(median (IQR),
mean (SD or CI)
or % in certain
age group(s)); %
of males | Given definition
of COVID-19/
pre-existing
condition (if yes,
see section 2.3
for detail) | Outcomes
relevant
for review | Adjustment method (Regression Model) /
Covariates / Reference age and sex category | Risk
of
bias | Analyses the study participated in [Main meta-analyses reported as: number of the resulted effect estimates the study contributed to; a meta-analysis is described as Condition-Outcome-Measure of association-Region-Total number of studies in the analysis-I ² %] | |---|---|--|--|---|---|---
--| | Yarza;
Spain ¹⁶⁸ | cohort; single-center; 9. Mar
- 19. Apr;
individuals with cancer
undergoing treatment
hospitalised with COVID-19
diagnosis | 63; 57%=50-70;
54% | PCR / no | in-hospital
mortality | Log / each comorbidity (HTN, DM, CKD, COPD, previous venous thromboembolic disease, chronic anaemia, ACEI/ARBsI) adjusted by age, sex, hypertension, diabetes, CKD, COPD, previous VTE, smoking habit; primary tumour types (5 different types/categories) adjusted by age, sex, CT; metastatic disease adjusted by age, sex, COPD, previous venous thromboembolic disease, metastatsis, ECOG; visceral metastatasis adjusted by age, sex, previous VTE, pulmonary involvement; cancer treatment (chemotherapy alone, immunotherapy and chemotherapy, immunotherapy alone) adjusted by age, sex, ECOG, metastasis, previous VTE, COPD / age<65 / male | NOS =6 | Analysis of evidence for specific population groups – patients with cancer | | Regions of Am | | | | | | | | | Antwi-
Amoabeng
; USA ¹⁶⁹ | cohort; single-center; 12.
Mar - 8. May;
individuals hospitalised with
COVID-19 diagnosis | 172; median 53
(33-68), nr (nr);
56% | PCR / no | in-hospital
mortality | Log / age, sex, ethnicity, comorbidities (DM, HTN, Obesity, CKD, COPD), ICU stay / age <61 / male | NOS
=8 | 5 estimates Chronic kidney disease-Hospital mortality-OR-AMR: North-11-19.7 // COPD-Hospital mortality-OR-AMR: North-5-37.9 // Diabetes-Hospital mortality-OR-AMR: North-12-6 // Hypertension-Hospital mortality-OR-AMR: North-12-68.6 // Obesity/BMI>30-Hospital mortality-OR-AMR: North-11-0 | | Argenzian
o: USA ¹⁷⁰
pre-print | cohort; single-center; 1. Mar
- 5. Apr;
individuals hospitalised with
COVID-19 diagnosis | 1000, 841 in the regression; median 63 (50-75), nr (nr); 60% | PCR / yes,
partially | in-hospital
mortality,
intubation | Cox/ age, sex, BMI, smoking, comorbidities (CAD, CHF, CRB, HTN, DM, cirrhosis, HIV, IBD, Resp, CKD, viral hepatitis, Organ, CANC, Rheuma, Immun, number comorbidities) / age numeric / male | NOS =5 | 30 estimates Coronary artery disease-Hospital mortality-HR-AMR: North-3-0 // Cancer/Active-Hospital mortality-HR-AMR: North-1-0 // Heart failure-Hospital mortality-HR-AMR: North-3-87.2 // Chronic kidney disease-Hospital mortality-HR-AMR: North-4-71.9 // Chronic liver/Cirrhosis-Hospital mortality-HR-AMR: North-1-0 // Cerebrovascular/Stroke-Hospital mortality-HR-AMR: North-1-0 // HIV-Hospital mortality-HR-AMR: North-1-0 // HIV-Hospital mortality-HR-AMR: North-5-0 // HIV-Hospital mortality-HR-AMR: North-1-0 // Lindammatory bowel disease-Hospital mortality-HR-AMR: North-1-0 // Organ transplant recipients-Hospital mortality-HR-AMR: North-1-0 // Hepatitis-Hospital mortality-HR-AMR: North-1-0 // Chronic Hospital mortality-HR-AMR: North-1-0 // Coronary artery disease-Intubation-HR-AMR: North-1-0 // Cancer/Active-Intubation-HR-AMR: North-1-0 // Heart failure-Intubation-HR-AMR: North-1-0 // Chronic kidney disease-Intubation-HR-AMR: North-1-0 // Chronic hidney disease-Intubation-HR-AMR: North-1-0 // Chronic hidney disease-Intubation-HR-AMR: North-1-0 // HiV-Intubation-HR-AMR: North-1-0 // HiV-Intubation-HR-AMR: North-1-0 // Hip-Intubation-HR-AMR: North-1-0 // Norgan transplant recipients-Intubation-HR-AMR: North-1-0 // Respiratory disease-Intubation-HR-AMR: North-1-0 // Organ transplant recipients-Intubation-HR-AMR: North-1-0 // Respiratory disease-Intubation-HR-AMR: North-1-0 // Respiratory disease-Intubation-HR-AMR: North-1-0 // Rheumatological disease-Intubation-HR-AMR: North-1-0 // Rheumatological disease-Intubation-HR-AMR: North-1-0 // Rheumatological disease-Intubation-HR-AMR: North-1-0 // Hepatitis-Intubation-HR-AMR: North-1-0 // Rheumatological disease-Intubation-HR-AMR: North-1-0 // Hepatitis-Intubation-HR-AMR: North-1-0 // Rheumatological disease-Intubation-HR-AMR: North-1-0 // Rheumatologica | | Azar;
USA ¹⁷¹ | cohort; electronic database;
1. Jan - 8. Apr;
individuals diagnosed with
COVID-19 | 1052; nr (nr),
mean 53 (CI: 52-
54); 49% | PCR / no | hospitalisa
tion | Log / age (6 groups), sex, SES, race/ethnicity, comorbidities (DM, HTN, CHF, CVD, CANC, COPD, AST, depression), smoking / age 18-39 / female | other
=goo
d | 8 estimates Asthma-Hospitalisation-OR-AMR: North-3-66.6 // Cancer-Hospitalisation-OR-AMR: North-5-17.8 // Heart failure-Hospitalisation-OR-AMR: North-4-80.7 // COPD-Hospitalisation-OR-AMR: North-4-15.2 // Cardiovascular disease-Hospitalisation-OR-AMR: North-4-81.1 // Depression-Hospitalisation-OR-AMR: North-1-0 // Diabetes-Hospitalisation-OR-AMR: North-5-59.3 | | Chhiba;
USA ¹⁷² | cohort; multi-center, 10; 1.
Mar - 15. Apr;
individuals diagnosed with
COVID-19 | 1526; 73%<40;
18%<70; 47% | PCR / yes, ICD
codes provided;
obesity is defined | hospitalisa
tion | Poisson / age, sex, race/ethnicity, smoking, comorbidities (AST, obesity, CAD, diabetes, HTN, obstructive sleep apnea, COPD, allergic rhinitis, rhinosinusitis, and immunodeficiency) / age >= 70 /male | ROBI
NS=
2xhig
h2xlo
w
2xunc
lear | 8 estimates Asthma-Hospitalisation-RR-AMR: North-1-0 // Coronary artery disease-Hospitalisation-RR-AMR: North-1-0 // COPD-Hospitalisation-RR-AMR: North-1-0 // Diabetes-Hospitalisation-RR-AMR: North-1-0 // Hypertension-Hospitalisation-RR-AMR: North-1-0 // Immunosuppression-Hospitalisation-RR-AMR: North-1-0 // Obesity/BMI>30-Hospitalisation-RR-AMR: North-2-0 // Obstructive sleep apnea-Hospitalisation-RR-AMR: North-1-0 | | Study | Study design; setting,
number of hospitals;
period;
Study population | Sample size; age
(median (IQR),
mean (SD or CI)
or % in certain
age group(s)); %
of males | Given definition
of COVID-19/
pre-existing
condition (if yes,
see section 2.3
for detail) | Outcomes
relevant
for review | Adjustment method (Regression Model) /
Covariates / Reference age and sex category | Risk
of
bias | Analyses the study participated in [Main meta-analyses reported as: number of the resulted effect estimates the study contributed to; a meta-analysis is described as Condition-Outcome-Measure of association-Region-Total number of studies in the analysis-I ² %] | |--|---|--|--|--|--|--------------------------------|---| |
Chilimuri;
USA ¹⁷³ | cohort; single-center; 9. Mar
- 9. Apr;
individuals hospitalised with
COVID-19 diagnosis | 375; median 63
(52-72), nr (nr);
63% | PCR / no | in-hospital
mortality | Log / age, sex, comorbidities (HTN, DM, CVD, CKD), laboratory values / age numeric / female | NOS
=8 | 4 estimates Chronic kidney disease-Hospital mortality-OR-AMR: North-11-19.7 // Diabetes-Hospital mortality-OR-AMR: North-12-0 // Hypertension-Hospital mortality-OR-AMR: North-12-68.6 // Cardiovascular disease-Hospital mortality-OR-AMR: North-4-0 | | Costa
Monteiro;
USA ¹⁷⁴ | cohort; single-center; 12.
Mar -16. Apr;
individuals hospitalised with
COVID-19 diagnosis | 112; median 61
(45-74), nr (nr);
66% | PCR / no | mechanica
1
intubation | Log / age, sex, comorbidities (obesity, DM, HTN, CAD, CKD), tobacco exposure history, race/ethnicity / age numeric / female | JBI=8
2% | 5 estimates Coronary artery disease-Intubation-OR-AMR: North-3-18.1 // Chronic kidney disease-Intubation-OR-AMR: North-5-72.5 // Diabetes-Intubation-OR-AMR: North-11-0 // Hypertension-Intubation-OR-AMR: North-9-0 // Obesity/BMI>30-Intubation-OR-AMR: North-10-0 | | Crouse;
USA ¹⁷⁵ | cohort; electronic database;
25. Feb -22. Jun;
individuals with COVID-19
tested at center | 604; nr (nr), nr
(nr); 45% | PCR / no | case
mortality | Log / age, sex, comorbidities (DM, obesity, HTN), race / age var1: <50; age var2: 50-70 / female | JBI=7
5% | 3 estimates Diabetes-Case mortality-OR-AMR: North-3-75.4 // Hypertension-Case mortality-OR-AMR: North-1-0 // Obesity/BMI>30-Case mortality-OR-AMR: North-2-5.6 | | Cummings
; USA ¹⁷⁶ | cohort; 2 hospitals; 2. Mar -
1. Apr; follow-up until 28.
Apr; critically ill individuals
hospitalised with COVID-19
diagnosis | 257; median 62
(51-72), nr (nr);
67% | PCR / no | ICU
mortality | Cox / age, sex, symptom duration before
hospital presentation (per day), comorbidities
(HTN, cardiac diseases, COPD, DM), laboratory
values / age per 10 year increase / female | NOS
=7 | The outcome was excluded from the reporting | | D'Silva;
USA ¹⁷⁷ | case-control; multi-center;
30. Jan - 8. Apr; individuals
registered as patients in the
health care provider's
network diagnosed with
COVID-19 | 52 cases, 104
controls; cases: nr
(nr), mean 62 (15);
controls: nr (nr),
mean 63 (15);
69% | PCR / yes | case
mortality,
hospitalisa
tion, ICU /
intubation | Matching / model 1 (mortality): age, BMI;
model 2: age, BMI, number of comorbidities;
model 3: age, comorbidities (HTN, CAD, Resp,
Rheuma) (model 3 included) / na | other
=fair | 2 estimates Rheumatological disease-Hospitalisation-OR-AMR: North-1-0 // Rheumatological disease-Case mortality-OR-AMR: North-2-0 | | Ebinger;
USA ¹⁷⁸ | cohort; multi-center; 8. Mar - 21. Mar; individuals registered as patients in the health care provider's network diagnosed with COVID-19 | 442 (model
hospitalization);
214 (models
intubation; model
ICU admission; nr
(nr), mean 53 (20);
58% | PCR / yes,
partially,
according to ECI,
obesity is defined,
no definition on
the other
comorbidities
included in the
model | hospitalisa
tion, ICU
admission,
intubation | Log / model hospitalisation: age, sex, race, ethnicity, obesity, HTN, DM, comorbidity score (ECI), CHF, COPD or AST, ACE inhibitor use, Angiotensin receptor blocker use; 2 different models; considers interactions b/w age, sex, obesity; model intubation and model ICU admission: age, sex, 1 of the following comorbidities (obesity, HTN, DM, ECI, CHF, prior COPD or AST) / age per 10 years / female | NOS
=9 | 15 estimates Heart failure-Hospitalisation-OR-AMR: North-4-80.7 // Diabetes-Hospitalisation-OR-AMR: North-8-37.6 // Hypertension-Hospitalisation-OR-AMR: North-5-59.3 // COPD or AST-Hospitalisation-OR-AMR: North-2-0 // Obesity/BMI>30-Hospitalisation-OR-AMR: North-7-18 // Diabetes-Intubation-OR-AMR: North-1-0 // Hypertension- Intubation-OR-AMR: North-9-0 // Obesity/BMI>30-Intubation-OR-AMR: North-10-0 // Heart failure-Intubation-OR- AMR: North-5-0 // COPD or AST-Intubation-OR-AMR: North-3-0 // Heart failure-ICU admission-OR-AMR: North-2-0 // COPD or AST-ICU admission-OR-AMR: North-2-0 // Diabetes-ICU admission-OR-AMR: North-6-0 // Hypertension- ICU admission-OR-AMR: North-6-0 // Obesity/BMI>30-ICU admission-OR-AMR: North-5-27.6 | | Gayam;
USA ¹⁷⁹ | cohort; single-center; 1. Mar
- 9. Apr:
individuals hospitalised with
COVID-19 diagnosis | 408; median 67
(nr), nr (nr); 57% | PCR / no | in-hospital
mortality | Log / age, BMI, symptoms at presentation, laboratory values / age numeric / sex na | other
=low-
mode
rate | The study is excluded from meta-analyses due to reporting of the risk as a unit increase in BMI index | | Goyal;
USA ¹⁸⁰ | cohort; 2 hospitals; 3. Mar -
15. May;
individuals hospitalised with
COVID-19 diagnosis | 1687; median 66
(54-77), nr (nr);
60% | PCR / yes,
partially, on
obesity | in-hospital
mortality | Cox / age, sex, race, smoking, comorbidities (DM, HTN, COPD, AST, CKD, CAD, CHF, CANC) / na | NOS
=7 | 4 estimates Underweight-Hospital mortality-HR-AMR: North-2-87.2 // Obesity/BMI>40-Hospital mortality-HR-AMR: North-2-0 // Overweight-Hospital mortality-HR-AMR: North-3-0 // Obesity/BMI>30-Hospital mortality-HR-AMR: North-4-0 | | Study | Study design; setting,
number of hospitals;
period;
Study population | Sample size; age
(median (IQR),
mean (SD or CI)
or % in certain
age group(s)); %
of males | Given definition
of COVID-19/
pre-existing
condition (if yes,
see section 2.3
for detail) | Outcomes
relevant
for review | Adjustment method (Regression Model) /
Covariates / Reference age and sex category | Risk
of
bias | Analyses the study participated in [Main meta-analyses reported as: number of the resulted effect estimates the study contributed to; a meta-analysis is described as Condition-Outcome-Measure of association-Region-Total number of studies in the analysis-I ² %] | |---------------------------------------|---|--|--|--|--|------------------------------------|--| | Gu, T,
Mack;
USA ¹⁸¹ | cohort; single-center; 10.
Mar - 22. Apr;
patients tested or treated for
COVID-19 at the University
of Michigan | tested cohort
n=5698; positive
cohort n=1119;
unmatched control
group n=7211,
frequency-
matched control
group n=13,351;
nr (nr), mean 53
(18); 47% | PCR / yes | hospitalisa
tion, case
mortality,
ICU
admission | Log / 3 models: 1) age, race/ethnicity, sex, 2) adjustment (1) +SES, and 3) adjustment (2) +comorbidity score. Model 2 is used for meta-analysis / age <50 / female; age 1 SD/female for mortality outcome | JBI=7
3% | 20 estimates Cancer-Hospitalisation-OR-AMR: North-5-17.8 // Cardiovascular disease-Hospitalisation-OR-AMR: North-4-81.1 // Diabetes-Hospitalisation-OR-AMR: North-8-37.6 // Obesity/BMI>-30-Hospitalisation-OR-AMR: North-7-18 // Autoimmune condition-Hospitalisation-OR-AMR: North-1-0 // Underweight-Hospitalisation-OR-AMR:
North-1-0 // Overweight-Hospitalisation-OR-AMR: North-3-0 // Chronic kidney disease-Hospitalisation-OR-AMR: North-5-81.5 // Chronic liver disease-Hospitalisation-OR-AMR: North-1-0 // Respiratory disease-Hospitalisation-OR-AMR: North-1-0 // Diabetes-Case mortality-OR-AMR: North-3-5.4 // Obesity/BMI>-30-Case mortality-OR-AMR: North-2-5.6 // Autoimmune condition-Case mortality-OR-AMR: North-1-0 // Cancer-Case mortality-OR-AMR: North-2-6.7 // Chronic kidney disease-Case mortality-OR-AMR: North-3-76.9 // Chronic liver disease-Case mortality-OR-AMR: North-2-10 // Cardiovascular disease-Case mortality-OR-AMR: North-1-0 // Case mortality-OR-AMR: North-2-0 // Underweight-Case mortality-OR-AMR: North-1-0 // Overweight-Case mortality-OR-AMR | | Gupta;
USA ¹⁸² | cohort; multi-center, 65; 4.
Mar - 4. Apr;
critically ill patients
diagnosed with COVID-19
in ICU | 2215; 2078 for
Cox regression,
1494 for mortality
in mechanically
ventilated patients;
nr (nr), mean 60
(14); 65% | PCR / yes,
partially, for
some
comorbidities
information was
provided | 28-day in-
hospital
mortality,
ICU
mortality
and
invasive
mechanica
l
ventilation
(IMV)
mortality | Cox, Log / age, sex, race, BMI, comorbidities (HTN, DM, CAD, CHF, COPD, CANCact), smoking, laboratory values, symptoms, SOFA score / age 18-39 / female | NOS
=9 | Excluded from the meta-analyses due to population selection – critically ill patients | | Harmouch;
USA ¹⁸³ | cohort; single-center; 1. Mar
- 15. Apr;
individuals hospitalised with
COVID-19 diagnosis | 560; median 63
(24), nr (nr); 57% | PCR / yes | in-hospital
mortality,
ICU
admission,
mechanica
1
ventilation | Log / model mortality: age, CKD stage>=3, vascular disease, laboratory values/ na | QUIP
S=
low-
mode
rate | 2 estimates
Chronic kidney disease-Hospital mortality-OR-AMR: North-11-19.7 // Cardiovascular disease-Hospital mortality-OR-AMR: North-4-0 | | Harrison;
USA ¹⁸⁴ | cohort; multi-center; 20. Jan - 26. May; individuals diagnosed with COVID-19 identified from federated electronic medical records | 31461; median 50
(35-63), nr (nr);
45% | PCR, ICD-10
code (%
unknown),/ based
on Charlson
comorbidity
index | case
mortality | Log / age, sex, ethnicity, Charlson comorbidities / numeric age / sex female | NOS
=8 | 13 estimates Diabetes-Case mortality-OR-AMR: North-3-75.4 // Rheumatological disease-Case mortality-OR-AMR: North-2-0 // Cancer-Case mortality-OR-AMR: North-2-66.7 // Chronic kidney disease-Case mortality-OR-AMR: North-3-76.9 // Chronic liver disease-Case mortality-OR-AMR: North-2-1.3 // Respiratory disease-Case mortality-OR-AMR: North-2-0 // Heart failure-Case mortality-OR-AMR: North-1-0 // Cerebrovascular/Stroke-Case mortality-OR-AMR: North-1-0 // Dementia-Case mortality-OR-AMR: North-1-0 // HIV-Case mortality-OR-AMR: North-1-0 // Cancer/Solid-Case mortality-OR-AMR: North-1-0 // Infarction-Case mortality-OR-AMR: North-1-0 // Peripheral vascular disease-Case mortality-OR-AMR: North-1-0 | | Hashemi;
USA ¹⁸⁵ | cohort; multi-center, 9; 11.
Mar - 2. Apr;
individuals hospitalised with
COVID-19 diagnosis | 363; nr (nr), mean
63 (16); 55% | PCR / yes,
partially, only on
CLD | in-hospital
mortality,
ICU
admission,
mechanica
l
ventilation | Log / age, sex, comorbidities (CLD, cardiac diseases, HTN, DM, hyperlipidaemia, Resp, obesity) / age na / female | NOS
=8 | 23 estimates Diabetes-Hospital mortality-OR-AMR: North-12-0 // Hypertension-Hospital mortality-OR-AMR: North-12-68.6 // Obesity/BMI>-30-Hospital mortality-OR-AMR: North-11-0 // Heart disease-Hospital mortality-OR-AMR: North-1-0 // Chronic liver disease-Hospital mortality-OR-AMR: North-3-0 // Chronic liver/Cirrhosis-Hospital mortality-OR-AMR: North-2-9.1 // Chronic liver/Non-cirrhotic-Hospital mortality-OR-AMR: North-1-0 // Dyslipidemia or hyperlipidemia-Hospital mortality-OR-AMR: North-3-0 // Diabetes-Intubation-OR-AMR: North-1-0 // Hypertension-Intubation-OR-AMR: North-9-0 // Obesity/BMI>-30-Intubation-OR-AMR: North-10-0 // Heart disease-Intubation-OR-AMR: North-2-83.5 // Chronic liver disease-Intubation-OR-AMR: North-2-48 // Dyslipidemia or hyperlipidemia-Intubation-OR-AMR: North-2-0 // Respiratory disease-Intubation-OR-AMR: North-3-0 // Diabetes-ICU admission-OR-AMR: North-6-0 // Obesity/BMI>-30-ICU admission-OR-AMR: North-5-27.6 // Heart disease-ICU admission-OR-AMR: North-2-0 // Chronic liver disease-ICU admission-OR-AMR: North-2-0 // Obesity/BMI>-30-ICU admission-OR-AMR: North-5-27.6 // Heart disease-ICU admission-OR-AMR: North-2-0 // Chronic liver disease-ICU admission-OR-AMR: North-2-0 // Obesity/BMI>-30-ICU Obesity/BMI | | Study | Study design; setting,
number of hospitals;
period;
Study population | Sample size; age
(median (IQR),
mean (SD or CI)
or % in certain
age group(s)); %
of males | Given definition
of COVID-19/
pre-existing
condition (if yes,
see section 2.3
for detail) | Outcomes
relevant
for review | Adjustment method (Regression Model) /
Covariates / Reference age and sex category | Risk
of
bias | Analyses the study participated in [Main meta-analyses reported as: number of the resulted effect estimates the study contributed to; a meta-analysis is described as Condition-Outcome-Measure of association-Region-Total number of studies in the analysis-I ² %] | |---|---|---|--|---|--|--------------------|---| | Hur;
USA ¹⁸⁶ | cohort; multi-center, 10; 1.
Mar - 8. Apr;
individuals hospitalised with
COVID-19 diagnosis | 486; median 59
(47-69), nr (nr);
56% | PCR / yes,
partially, for
CVD and
Pulmonary
disease | Intubation
in
hospitalise
d
individuals | Log / age, sex, race, hospital type, BMI and comorbidities (diabetes), shortness of breath, pulse, temperature, respiratory rate / age<60 / female | NOS
=9 | 3 estimates Diabetes-Intubation-OR-AMR: North-11-0 // Obesity/BMI>30-Intubation-OR-AMR: North-10-0 // Obesity/BMI>40-Intubation-OR-AMR: North-2-6.5 | | Imam;
USA ¹⁸⁷ | cohort; multi-center, 8; 1.
Mar - 1. Apr;
individuals hospitalised with
COVID-19 diagnosis | 1305; nr (nr),
mean 61 (16);
54% | PCR / no | in-hospital
mortality | Log / age, Charlson Comorbidity Index >3 / age <60 / sex na | NOS
=6 | Risk "Charlson Comorbidity Index" was excluded from meta-analyses | | Jun;
USA ¹⁸⁸
pre-print | cohort; multi-center, 5; 21. Mar - 28. Apr; follow-up until 3. Jun; individuals hospitalised with COVID-19 diagnosis, admitted through the emergency room | 3086; median 66
(56-77), nr (nr);
60% | PCR / no | in-hospital
mortality | Log / age, sex, race, comorbidities (HTN, DM, CAD, CHF, ART, CKD, COPD or AST, obesity, CANC) / age numeric/ female | JBI=7
7% | 9 estimates Chronic kidney disease-Hospital mortality-OR-AMR: North-11-19.7 // Diabetes-Hospital mortality-OR-AMR: North-12-0 // Hypertension-Hospital mortality-OR-AMR: North-12-68.6 // Obesity/BMI>30-Hospital mortality-OR-AMR: North-11-0 // Arrhythmia-Hospital mortality-OR-AMR: North-2-0 // Coronary artery disease-Hospital mortality-OR-AMR: North-6-10.2 // Cancer-Hospital mortality-OR-AMR: North-5-0 // Heart failure-Hospital mortality-OR-AMR: North-8-31.6 // COPD or AST-Hospital mortality-OR-AMR: North-3-0 | | Kabarriti;
USA ¹⁸⁹ | cohort; single-center; 14.
Mar - 15. Apr; follow-up
until 27. Apr;
individuals diagnosed with
COVID-19 | 5902; median 58
(44-71), nr (nr);
47% | PCR / based on
the Charlson
Comorbidity
Index | case
mortality | Cox / age, sex, race/ethnicity, socioeconomic status and comorbidities (Charlson Index: HTN, CVD, DM, CANC, liver disease, DEM, chronic pulmonary disease, peptic ulcer, hemiplegia or paraplegia, kidney disease, HIV/AIDS and in addition BMI, HTN) / age <=40 / men | NOS
=8 | 11 estimates Underweight-Case mortality-HR-AMR: North-1-0 // Obesity/BMI>30-Case mortality-HR-AMR: North-1-0 // Cancer- Case mortality-HR-AMR: North-1-0 // Chronic liver disease-Case mortality-HR-AMR: North-1-0 // Chronic kidney disease-Case mortality-HR-AMR: North-1-0 // Dementia- Case mortality-HR-AMR: North-1-0 // Diabetes-Case mortality-HR-AMR: North-1-0 // HIV-Case mortality-HR-AMR: North-1-0 // Hypertension-Case mortality-HR-AMR: North-1-0 // Respiratory disease-Case mortality-HR-AMR: North-1-0 0 | | Kalligeros;
USA ¹⁹⁰ | cohort; multi-center, 3; Feb. 17 - 5. Apr; individuals hospitalised with COVID-19 diagnosis | 103; median 60
(50-72), nr (nr);
61% | PCR / no | ICU
admission,
intubation | Log / ICU
admission model/intubation model:
age, ethnicity, sex, BMI, comorbidities (DM,
HTN, cardiac diseases, Resp, pulmonary disease
or respiratory disease not defined) / age numeric
/ female | NOS
=9 | 12 estimates Diabetes-Intubation-OR-AMR: North-11-0 // Hypertension-Intubation-OR-AMR: North-9-0 // Obesity/BMI>30- Intubation-OR-AMR: North-10-0 // Heart disease-Intubation-OR-AMR: North-2-83.5 // Respiratory disease-Intubation-OR-AMR: North-3-0 // Overweight-Intubation-OR-AMR: North-3-21.9 // Diabetes-ICU admission-OR-AMR: North-6-0 // Ubesity/BMI>30-ICU admission-OR-AMR: North-5-27.6 // Heart disease-ICU admission-OR-AMR: North-2-0 // Respiratory disease-ICU admission-OR-AMR: North-3-0 // Overweight-ICU admission-OR-AMR: North-2-0 | | Killerby;
USA ¹⁹¹ | cohort; multi-center, 6; 1.
Mar - 7. Apr;
individuals diagnosed with
COVID-19 | 531, 368 in
regression; non-
hospitalized:
median 45 (33-
58), nr (nr);
hospitalized:
median 61 (45-
70), nr (nr); Non-
hospitalized: 37%;
Hospitalized: 52% | PCR / partially,
on obesity, CVD,
CKD | hospitalisa
tion | Log / age, sex, race, smoking status, comorbidities (obesity, HTN, DM, CVD, Resp, CKD) / age 18-44 / female | NOS
=6 | 2 estimates Diabetes-Hospitalisation-OR-AMR: North-8-37.6 // Obesity/BMI>30-Hospitalisation-OR-AMR: North-7-18 | | Study | Study design; setting,
number of hospitals;
period;
Study population | Sample size; age
(median (IQR),
mean (SD or CI)
or % in certain
age group(s)); %
of males | Given definition
of COVID-19/
pre-existing
condition (if yes,
see section 2.3
for detail) | Outcomes
relevant
for review | Adjustment method (Regression Model) /
Covariates / Reference age and sex category | Risk
of
bias | Analyses the study participated in [Main meta-analyses reported as: number of the resulted effect estimates the study contributed to; a meta-analysis is described as Condition-Outcome-Measure of association-Region-Total number of studies in the analysis-I ² %] | |--|--|--|--|--|---|------------------------------------|---| | Kim.L;
USA ¹⁹² | cohort; multi-center, 154; 1.
Mar - 2. May;
individuals hospitalised with
COVID-19 diagnosis | 2491; median 62
(50–75), nr (nr);
53% | PCR / yes | ICU
admission,
in-hospital
mortality | Poisson / model ICU admission 1: age, sex, race/ethnicity, smoker, comorbidities (BMI>30, CKD, DM, HTN, Immun, neurologic disease, Resp, CVD), medication; model in-hospital mortality 2: age, sex, race/ethnicity, smoker, comorbidities (chronic neurological disorder, CKD, CVD, DM, HTN, Immun, obesity, Resp, Rheuma, hematologic), drugs; model ICU admission 3: age, sex, race/ethnicity, number of underlying medical conditions; model in-hospital mortality 4: age, sex, race/ethnicity, nr of underlying medical conditions / age 18–39 years / female | NOS
=9 | 17 estimates Neurological disease-Hospital mortality-RR-AMR: North-1-0 // Chronic kidney disease-Hospital mortality-RR-AMR: North-1-0 // Cardiovascular disease-Hospital mortality-RR-AMR: North-1-0 // Diabetes-Hospital mortality-RR-AMR: North-3-0 // Hypertension-Hospital mortality-RR-AMR: North-2-54.5 // Immunosuppression-Hospital mortality-RR-AMR: North-1-0 // Obesity/BMI>30-Hospital mortality-RR-AMR: North-2-15.9 // Respiratory disease-Hospital mortality-RR-AMR: North-1-0 // Reumatological disease-Hospital mortality-RR-AMR: North-1-0 // Obesity/BMI>30- ICU admission-RR-AMR: North-1-0 // Chronic kidney disease-ICU admission-RR-AMR: North-1-0 // Diabetes-ICU admission-RR-AMR: North-1-0 // Hypertension-ICU admission-RR-AMR: North-1-0 // Immunosuppression-ICU admission-RR-AMR: North-1-0 // Neurological disease-ICU admission-RR-AMR: North-1-0 // Respiratory disease-ICU admission-RR-AMR: North-1-0 // Cardiovascular disease-ICU admission-RR-AMR: North-1-0 | | Klang;
USA ¹⁹³ | cohort; multi-center, 5; 1.
Mar - 17. May;
individuals hospitalised with
COVID-19 diagnosis with
data available on BMI | 2834; survivors:
median 68 (60-
77), nr (nr);
nonsurvivors:
median 76 (67-
84), nr (nr); 54%
of survivors and
57% of
nonsurvivors | PCR / yes,
partially, for
obesity | in-hospital
mortality | Log / models estimated for age groups >50 and <=50 (age, sex, ethnicity, comorbidities (obesity, CAD, CANC, CHF, CKD, HTN, hyperlipidemia) / age decile / female | NOS
=8 | 9 estimates Chronic kidney disease-Hospital mortality-OR-AMR: North-11-19.7 // Diabetes-Hospital mortality-OR-AMR: North-12-0 // Hypertension-Hospital mortality-OR-AMR: North-12-68.6 // Obesity/BMI>30-Hospital mortality-OR-AMR: North-11-0 // Dyslipidemia or hyperlipidemia-Hospital mortality-OR-AMR: North-3-0 // Coronary artery disease-Hospital mortality-OR-AMR: North-5-0 // Heart failure-Hospital mortality-OR-AMR: North-8-31.6 // Obesity/BMI>40-Hospital mortality-OR-AMR: North-2-0 and Analysis of age-stratified estimates | | Lieberman
-Cribbin;
USA ¹⁹⁴ | cohort; multi-center; 29. Feb - 24. Apr; individuals hospitalised with COVID-19 diagnosis | 6245; patients
without/with
COVID-19: nr
(nr), mean 57 (33);
only reported for
sample of patients
without/with
COVID-19: 49% | PCR / asthma | in-hospital
mortality | Log / age, sex, race, comorbidities (AST) / age<40 / male | QUIP
S=
low-
mode
rate | 1 estimate Asthma-Hospital mortality-OR-AMR: North-3-0 | | Magleby;
USA ¹⁹⁵ | cohort; 2 hospitals; 30. Mar
- 30. Apr;
individuals hospitalised with
COVID-19 diagnosis | 678; three cycle threshold (CT)-value groups: median 72 (60-81), nr (nr); median 69 (58-79), nr (nr); median 63 (50-73), nr (nr); 3 CT-value groups: 63%; 61%, 59% | PCR / yes,
partially, only for
obesity | Intubation,
in-hospital
mortality | Log / model mortality: age, white race, comorbidities (CAD, CHF, COPD, CRB, HTN), use of oral steroids as an outpatient, days of symptoms prior to admission, symptoms on admission, highest level of supplemental oxygen within 3 hours of arrival to the ED, chest xray findings, viral load by nasal pharyngeal swab; model intubation: age, race, obesity, use of steroids as an outpatient, symptoms on admission, chest xray findings, viral load by nasal pharyngeal swab / age numeric / sex na | NOS
=8 | 6 estimates COPD-Hospital mortality-OR-AMR: North-5-37.9 // Hypertension-Hospital mortality-OR-AMR: North-12-68.6 // Coronary artery disease-Hospital mortality-OR-AMR: North-6-10.2 // Heart failure-Hospital mortality-OR-AMR: North-8-31.6 // Cerebrovascular/Stroke-Hospital mortality-OR-AMR: North-3-0 // Obesity/BMI>30-Intubation-OR-AMR: North-10-0 | | Mahdavini
a; USA ¹⁹⁶ | cohort; electronic database;
12. Mar - 3. Apr;
patients with COVID-19
diagnosis selected from
acute care hospitals and
outpatient clinics | 935; nr (nr), nr
(nr); with AST:
67%; without
AST: 51% | PCR / no | hospitalisa
tion,
mechanica
1
intubation,
case
mortality | Stratification / AST / Age groups: 18-49, 50-64, >65 / sex na | other
=high | Analysis of age-stratified estimates – asthma | | Study | Study design; setting,
number of hospitals;
period;
Study population | Sample size; age
(median (IQR),
mean (SD or CI)
or % in certain
age group(s)); %
of males | Given definition
of COVID-19/
pre-existing
condition (if yes,
see section 2.3
for detail) | Outcomes
relevant
for review | Adjustment method (Regression Model) /
Covariates / Reference age and sex category | Risk
of
bias | Analyses the study participated in [Main meta-analyses reported as: number of the resulted effect estimates the study contributed to; a meta-analysis is described as Condition-Outcome-Measure of association-Region-Total number of studies in the analysis-I ² %] | |---
--|--|---|---|---|---|--| | McCarty;
USA ¹⁹⁷ | cohort; multi-center, 9; 22.
Mar - 2. Apr;
individuals hospitalised with
COVID-19 diagnosis | 379; nr (nr), mean
63 (16); 56% | PCR / yes,
partially, on
history of cardiac
disease,
pulmonary
disease, obesity;
no info on HTN
and DM | in-hospital
mortality,
ICU
admission,
mechanica
l
ventilation | Log / age, sex, race/ethnicity, comorbidities (obesity, CVD, Resp, HTN, DM) / age na/ female | JBI=7
3% | 15 estimates Diabetes-Hospital mortality-OR-AMR: North-12-0 // Hypertension-Hospital mortality-OR-AMR: North-12-68.6 // Obesity/BMI>30-Hospital mortality-OR-AMR: North-11-0 // Cardiovascular disease-Hospital mortality-OR-AMR: North-4-0 // Respiratory disease-Hospital mortality-OR-AMR: North-3-0 // Diabetes-Intubation-OR-AMR: North-11-0 // Hypertension-Intubation-OR-AMR: North-3-0 // Cardiovascular disease-Intubation-OR-AMR: North-10 // Diabetes-ICU admission-OR-AMR: North-6-0 // Hypertension-ICU admission-OR-AMR: North-1-0 // Diabetes-ICU admission-OR-AMR: North-5-27.6 // Respiratory disease-ICU admission-OR-AMR: North-3-0 // Cardiovascular disease-ICU admission-OR-AMR: North-3-0 // Cardiovascular disease-ICU admission-OR-AMR: North-3-0 // Cardiovascular disease-ICU admission-OR-AMR: North-1-0 | | Mehta;
USA ¹⁹⁸ | cohort; single-center; 18.
Mar - 8. Apr;
individuals with a malignant
diagnosis with COVID-19 | 218; median 69
(nr), nr (nr); 58% | PCR / no | case
mortality | Log / age, sex, ICU admission, laboratory
values, comorbidity score (DM, HTN, Resp,
chronic kidney disease, CAD and CHF capped at
a maximum of 3) / age>65 / sex na | NOS
=7 | Analysis of evidence for specific population groups – patients with cancer | | Mendy;
USA ¹⁹⁹
pre-print | cohort; multi-center, 4; 13.
Mar - 31. May;
COVID-19 patients
diagnosed at the University
of Cincinnati health system | 689; median 49
(35-67), nr (nr);
53% | PCR / yes, ICD-
10 for all
comorbidities | hospitalisa
tion, ICU
admission/
death | Log / age, sex, race/ethnicity, smoker,
comorbidities (pure hypercholesteromia, AST,
COPD, CKD, CVD, neoplasm or history of
neoplasm, DM, osteoarthritis, vitamin D
deficiency, obesity), hematological disorders /
age (per 10 years increase) / female | NOS
=7 | 8 estimates Asthma-Hospitalisation-OR-AMR: North-3-66.6 // Cancer-Hospitalisation-OR-AMR: North-5-17.8 // COPD-Hospitalisation-OR-AMR: North-4-15.2 // Cardiovascular disease-Hospitalisation-OR-AMR: North-4-81.1 // Diabetes-Hospitalisation-OR-AMR: North-7-18 // Clronic kidney disease-Hospitalisation-OR-AMR: North-7-18 // Clronic kidney disease-Hospitalisation-OR-AMR: North-5-81.5 // Dyslipidemia or hyperlipidemia-Hospitalisation-OR-AMR: North-2-91.6 | | Mikami;
USA ²⁰⁰ | cohort; multi-center, 8 + 400
ambulant; 13. Mar - 17. Apr;
individuals hospitalised with
COVID-19 diagnosis | 2820; median 66
(55-78), nr (nr);
57% | PCR / no | in-hospital
mortality | Cox / age, sex, race, smoking, comorbidities
(HTN, diabetes, or CANC), vital signs, BMI,
initial laboratory values (lymphocyte proportion,
D -dimer IL-6), and hydroxychloroquine use /
age < 50 / male | NOS
=7 | 3 estimates Diabetes-Hospital mortality-HR-AMR: North-5-0 // Hypertension-Hospital mortality-HR-AMR: North-4-0 // Cancer-Hospital mortality-HR-AMR: North-4-0 | | Miyashita
(a);
USA ²⁰¹ | cohort; multi-center, 8 +
more than 400 ambulant; 1.
Mar - 30. Apr; follow up
until 1. May;
individuals diagnosed with
COVID-19 | total n=8912, in
analysis n=3992: n
for ICU
admission=1982,
for Intubation
n=752, for death
n=1258; ICU
admission:
49%>=66;
Intubation: 501%
>=66; death:
74%>=66; nr | PCR / no | case
mortality,
risk of
intubation,
risk of
ICU
admission | Stratification / age, HIV / na | JBI=7
5% | Analysis of age-stratified estimates – HIV | | Miyashita
(b);
USA ²⁰² | cohort; multi-center; 1. Mar
- 6. Apr;
individuals diagnosed with
COVID-19 | 5688; Intubation:
14%>=81; death:
36%>=81; nr | PCR / no | case
mortality,
risk of
intubation | Stratification / age, CANC / na | QUIP
S=
low-
mode
rate-
high | Analysis of age-stratified estimates – cancer | | Miyashita
(c);
USA ²⁰³ | cohort; electronic database;
1. Mar - 2. Apr;
individuals >=60 years
diagnosed with COVID-19 | 2071; with DEM
68%>80; without
DEM 23% >80;
with DEM: 44%,
without DEM:
51% | PCR / no | case mortality, ICU admission, mechanica l ventilation | Stratification / Dementia, age 60-79, >80 / sex na | NOS
=7 | Analysis of age-stratified estimates – dementia | | Study | Study design; setting,
number of hospitals;
period;
Study population | Sample size; age
(median (IQR),
mean (SD or CI)
or % in certain
age group(s)); %
of males | Given definition
of COVID-19/
pre-existing
condition (if yes,
see section 2.3
for detail) | Outcomes
relevant
for review | Adjustment method (Regression Model) /
Covariates / Reference age and sex category | Risk
of
bias | Analyses the study participated in [Main meta-analyses reported as: number of the resulted effect estimates the study contributed to; a meta-analysis is described as Condition-Outcome-Measure of association-Region-Total number of studies in the analysis-I ² %] | |--|--|---|--|--|--|--------------------|---| | Nakeshban
di; USA ²⁰⁴ | cohort; single-center; 10.
Mar - 13. Apr;
individuals hospitalised with
COVID-19 diagnosis | 504; nr (nr), mean
68 (15); 52% | PCR / yes,
partially, only for
obesity | in-hospital
mortality
(30-day) | Log / age, sex, comorbidities (HTN, DM, BMI),
qSOFA; subgroup analysis / age<45 / female | NOS
=4 | 8 estimates Diabetes-Hospital mortality-RR-AMR: North-3-0 // Hypertension-Hospital mortality-RR-AMR: North-2-54.5 // Obesity/BMI>30-Hospital mortality-RR-AMR: North-2-15.9 // Overweight-Hospital mortality-RR-AMR: North-1-0 // Obesity/BMI>30-Intubation-RR-AMR: North-2-10.7 // Overweight-Intubation-RR-AMR: North-1-0 // Diabetes- Intubation-RR-AMR: North-1-0 // Hypertension-Intubation-RR-AMR:
North-1-0 and Analysis of age-stratified estimates | | Narain;
USA ²⁰⁵ | cohort; multi-center, 12; 1.
Mar - 24. Apr;
individuals hospitalised with
COVID-19 diagnosis | 5776; nr (nr),
mean 62 (nr)-67
(nr); 61%-72%
reported by
treatment groups | PCR / no | in-hospital
mortality | Cox / age, sex, race/ethnicity, smoking, insurance, treatment site, laboratory findings, comorbidities (AST, COPD, CLD, DM, HTN, ILD, Auto, CVD, CKD, CANC, BMI), haemodialysis, CCI, intubation / age na/ female | JBI=6
8% | 13 estimates Chronic kidney disease-Hospital mortality-HR-AMR: North-4-71.9 // Diabetes-Hospital mortality-HR-AMR: North-5-0 // Hypertension-Hospital mortality-HR-AMR: North-4-0 // Underweight-Hospital mortality-HR-AMR: North-2-87.2 // Overweight-Hospital mortality-HR-AMR: North-3-0 // Obesity/BMI>-30-Hospital mortality-HR-AMR: North-4-0 // Cancer-Hospital mortality-HR-AMR: North-1-0 // Chronic liver disease-Hospital mortality-HR-AMR: North-1-0 // COPD-Hospital mortality-HR-AMR: North-3-0 // Cardiovascular disease-Hospital mortality-HR-AMR: North-1-0 // Interstitial lung disease-Hospital mortality-HR-AMR: North-1-0 | | Okoh;
USA ²⁰⁶ | cohort; single-center; 10.
Mar - 10. Apr;
individuals (Black/African
American and Latino
Hispanic) hospitalised with
COVID-19 | 251; median 62
(49-74), nr (nr);
51% | PCR / no | in-hospital
mortality | Log / age, HIV, laboratory findings / age
numeric/ female | NOS
=6 | 1 estimate HIV-Hospital mortality-OR-AMR: North-1-0 | | Palaiodimo
s; USA ²⁰⁷ | cohort; single-center; 9. Mar
- 22. Mar; follow-up until
12. Apr;
individuals hospitalised with
COVID-19 diagnosis
admitted through the
emergency room | 200; median 64
(50–73), nr (nr);
49% | PCR / yes,
partially, BMI
categories
provided | in-hospital
mortality,
intubation | Log / model in-hospital mortality: sex, age, comorbidities (BMI<25vs25-34, BMI>=35vs25-34, CAD, CHF, CKD, COPD, DM), smoker; model intubation: sex, age, comorbidities (BMI<25vs25-34, BMI>=35vs25-34, DM, hyperlipidemia, obstructive sleep apnea), smoker / age (quartiles)/female | NOS
=9 | 12 estimates Chronic kidney disease-Hospital mortality-OR-AMR: North-11-19.7 // COPD-Hospital mortality-OR-AMR: North-5-37.9 // Diabetes-Hospital mortality-OR-AMR: North-12-0 // Obesity/BMI>-30-Hospital mortality-OR-AMR: North-11-0 // Coronary artery disease-Hospital mortality-OR-AMR: North-6-10.2 // Heart failure-Hospital mortality-OR-AMR: North-8-31.6 // Underweight-Hospital mortality-OR-AMR: North-1-0 // Diabetes-Intubation-OR-AMR: North-1-0 // Obesity/BMI>-30-Intubation-OR-AMR: North-10-0 // Dyslipidemia or hyperlipidemia-Intubation-OR-AMR: North-2-0 // Underweight-Intubation-OR-AMR: North-1-0 // Obstructive sleep apnea-Intubation-OR-AMR: North-1-0 | | Patel, N;
USA ²⁰⁸
pre-print | cohort; multi-center, 10; 9.
Mar - 26. Jun;
individuals on
anticoagulation treatment
hospitalised with COVID-19
diagnosis | 1716; 48%>60;
54% | ICD-10 code /
ICD-10 code /
yes, CCI score
was used, BMI | intubation | Log / age, sex, race, BMI, CCI, glucose on admission, use of antiplatelet agents / age 45-59 / female | JBI=7
3% | Analysis of evidence for specific population groups – patients on anticoagulation treatment | | Petrilli;
USA ²⁰⁹ | cohort; single-center; 1. Mar
- 8. Apr; follow-up until 5.
May;
individuals with COVID-19
diagnosis /individuals
hospitalised | 5279 tested
positive (model
hospitalisation);
2737 inpatients
(model death);
median 54 (38-
66), nr (nr); 49% | PCR / yes,
partially, only
BMI categories | in-hospital
mortality,
hospitalisa
tion | Log, competing risk models: in-hospital mortality /hospitalisation: time variable, age, sex, race/ethnicity, smoking, comorbidities (obesity, CAD, CHF, CKD, COPD or AST, DM, HTN, hyperlipidemia, CANC) / age 19-44 / female | NOS
=8 | 22 estimates Cancer-Hospitalisation-OR-AMR: North-5-17.8 // Heart failure-Hospitalisation-OR-AMR: North-4-80.7 // Diabetes-Hospitalisation-OR-AMR: North-8-37.6 // Hypertension-Hospitalisation-OR-AMR: North-5-59.3 // COPD or AST-Hospitalisation-OR-AMR: North-2-0 // Obesity/BMI>30-Hospitalisation-OR-AMR: North-7-18 // Overweight-Hospitalisation-OR-AMR: North-3-0 // Chronic kidney disease-Hospitalisation-OR-AMR: North-5-81.5 // Dyslipidemia or hyperlipidemia-Hospitalisation-OR-AMR: North-10 // Coronary artery disease-Hospitalisation-OR-AMR: North-2-0 // Coronary artery disease-Hospital mortality-HR-AMR: North-3-0 // Chronic kidney disease-Hospital mortality-HR-AMR: North-3-0 // Heart failure-Hospital mortality-HR-AMR: North-3-7.2 // Chronic kidney disease-Hospital mortality-HR-AMR: North-4-10 // Obesity/BMI>40-Hospital mortality-HR-AMR: North-2-0 // Overweight-Hospital mortality-HR-AMR: North-4-0 // Obesity/BMI>40-Hospital mortality-HR-AMR: North-4-0 // Overweight-Hospital mortality-HR-AMR: North-3-0 // Obesity/BMI>30-Hospital mortality-HR-AMR: North-4-0 // COPD or AST-Hospital mortality-HR-AMR: North-1-0 // Dyslipidemia or hyperlipidemia-Hospital mortality-HR-AMR: North-1-0 // COPD or AST-Hospital mortality-HR-AMR: North-1-0 // Dyslipidemia or hyperlipidemia-Hospital mortality-HR-AMR: North-1-0 | | Study | Study design; setting,
number of hospitals;
period;
Study population | Sample size; age
(median (IQR),
mean (SD or CI)
or % in certain
age group(s)); %
of males | Given definition
of COVID-19/
pre-existing
condition (if yes,
see section 2.3
for detail) | Outcomes
relevant
for review | Adjustment method (Regression Model) /
Covariates / Reference age and sex category | Risk
of
bias | Analyses the study participated in [Main meta-analyses reported as: number of the resulted effect estimates the study contributed to; a meta-analysis is described as Condition-Outcome-Measure of association-Region-Total number of studies in the analysis-I ² %] | |---|---|---|---|--|---|--------------------|--| | Pettit;
USA ²¹⁰ | cohort; single-center; 1. Mar
- 18. Apr;
individuals hospitalised with
COVID-19 diagnosis | 238; nr (nr), mean
58 (17); 47% | PCR / yes,
partially, on
obesity,
cardiovascular
disease and
pulmonary
disease only | in-hospital
mortality | Log / age, sex, comorbidities (CANC, CKD, CRB, CVD, DM, HTN, hyperlipidemia, obesity, Resp, venous thromboembolism) / numeric age / female | NOS
=9 | 10 estimates Chronic kidney disease-Hospital mortality-OR-AMR: North-11-19.7 // Diabetes-Hospital mortality-OR-AMR: North-12-0 // Hypertension-Hospital mortality-OR-AMR: North-12-68.6 // Obesity/BMI>-30-Hospital mortality-OR-AMR: North-11-0 // Cardiovascular disease-Hospital mortality-OR-AMR: North-4-0 // Dyslipidemia or hyperlipidemia-Hospital mortality-OR-AMR: North-3-0 // Cancer-Hospital mortality-OR-AMR: North-3-0 // Cerebrovascular/Stroke-Hospital mortality-OR-AMR: North-3-0 // V.thromboembolism-Hospital mortality-OR-AMR: North-3-0 // | | Price-
Haywood;
USA ²¹¹ | cohort; multi-center; 1. Mar
- 11. Apr; follow-up until 7.
May;
health services members
diagnosed with COVID-19 | 3481; White Non-
Hispanic: ne (nr),
mean 55 (18);
Black Non-
Hispanic: nr (nr),
mean 54 (16);
White Non-
Hispanic: 46%;
Black Non-
Hispanic: 38% | PCR / yes
partially, obesity
and CCI are
defined | hospitalisa
tion, in-
hospital
mortality | Cox / 3 models: 1) race only 2) race, age, sex, 3) race, age, sex, CCI, obesity, SES. Model 3 is included / age 5-yr units / female | JBI=9
1% | 2 estimates Obesity/BMI>30-Hospital mortality-OR-AMR: North-11-0 // Obesity/BMI>30-Hospitalisation-OR-AMR: North-7-18 | | Rentsch;
USA ²¹²
pre-print | cohort; electronic database;
8. Feb - 30. Mar;
individuals (veterans, 90%
male, aged 54-75 years old)
with COVID-19 diagnosis | 585; median 66
(60-71), nr (nr);
95% | PCR / yes | case ICU,
hospitalisa
tion | Log / age, race/ethnicity, medication history,
vital signs, laboratory values, comorbidities
(CKD, COPD, DM, HTN, vascular disease) /
age 5-yr increase/sex na | JBI=8
8% | 5 estimates COPD-Hospitalisation-OR-AMR: North-4-15.2 // Cardiovascular disease-Hospitalisation-OR-AMR: North-4-81.1 // Diabetes-Hospitalisation-OR-AMR: North-8-37.6 // Hypertension-Hospitalisation-OR-AMR: North-5-59.3 // Chronic kidney disease-Hospitalisation-OR-AMR: North-5-81.5 | | Robilotti;
USA ²¹³ | cohort; single-center; 10.
Mar - 7.
Apr;
patients with cancer
diagnosed with COVID-19 | 423; 411 in regression; 56%>60; 50% | PCR / yes,
partially, for
cancer solid,
cancer
hematologic,
cardiac
dysfunction only;
no further
definitions for
metastastic
disease, asthma,
or for COPD,
DM, CKD, HTN | hospitalisa
tion,
severe
respiratory
illness | Log / age, race, smoking, comorbidities (COPD or AST, cancer (metastatic solid), cancer (hematologic), cardiac disorder, HTN or CKD) chronic lymphopenia or corticosteroids, treatment with immune check-point inhibitors / age<65 / sex na | NOS
=5 | Analysis of evidence for specific population groups – patients with cancer | | Salacup;
USA ²¹⁴ | cohort; single-center; 1. Mar
-24. Apr;
individuals (70% African-
American) hospitalised with
COVID-19 | 242; nr (nr), mean 66 (15); 50% | PCR / no | in-hospital
mortality,
intubation | Log / age, sex, race, BMI, comorbidities (COPD or AST, DM, HTN, CHF, CLD/cirrhosis, CKD) / age numeric / male | NOS
=7 | 12 estimates Chronic kidney disease-Hospital mortality-OR-AMR: North-11-19.7 // Diabetes-Hospital mortality-OR-AMR: North-12- 0 // Hypertension-Hospital mortality-OR-AMR: North-12-68.6 // Chronic liver/Cirrhosis-Hospital mortality-OR-AMR: North-2-29.1 // Heart failure-Hospital mortality-OR-AMR: North-8-31.6 // COPD or AST-Hospital mortality-OR-AMR: North-3-0 // Chronic kidney disease-Intubation-OR-AMR: North-5-72.5 // Diabetes-Intubation-OR-AMR: North-11-0 // Hypertension-Intubation-OR-AMR: North-5-0 // COPD or AST- Intubation-OR-AMR: North-3-0 // Chronic liver/Cirrhosis-Intubation-OR-AMR: North-1-0 | | Study | Study design; setting,
number of hospitals;
period;
Study population | Sample size; age
(median (IQR),
mean (SD or CI)
or % in certain
age group(s)); %
of males | Given definition
of COVID-19/
pre-existing
condition (if yes,
see section 2.3
for detail) | Outcomes
relevant
for review | Adjustment method (Regression Model) /
Covariates / Reference age and sex category | Risk
of
bias | Analyses the study participated in [Main meta-analyses reported as: number of the resulted effect estimates the study contributed to; a meta-analysis is described as Condition-Outcome-Measure of association-Region-Total number of studies in the analysis-I ² %] | |--|--|---|--|--|---|--------------------|--| | Seiglie;
USA ²¹⁵ | cohort; single-center; 11.
Mar - 30. Apr;
individuals hospitalised with
COVID-19 diagnosis | 450; without DM:
nr (nr), mean 61
(19); with DM: nr
(nr), mean 67 (14);
55% group
without DM; 62%
group with DM | PCR / yes,
partially, on BMI
and DM, not on
the other
comorbidities | in-hospital
mortality,
ICU
admission,
intubation
(14-day
outcomes) | Log / age, sex, race, BMI, comorbidities (DM, CAD or Myo, CHF, HTN, COPD or AST, CANCact, CLD, CKD) / age <50 / female | NOS
=9 | 27 estimates Chronic kidney disease-Hospital mortality-OR-AMR: North-11-19.7 // Diabetes-Hospital mortality-OR-AMR: North-12-0 // Hypertension-Hospital mortality-OR-AMR: North-12-68.6 // Obesity/BMI>-30-Hospital mortality-OR-AMR: North-11-0 // Chronic liver disease-Hospital mortality-OR-AMR: North-3-0 // Heart failure-Hospital mortality-OR-AMR: North-3-10 // Overweight-Hospital mortality-OR-AMR: North-3-0 // Overweight-Hospital mortality-OR-AMR: North-2-0 // Cancer/Active-Hospital mortality-OR-AMR: North-1-0 // Chronic kidney disease-Intubation-OR-AMR: North-5-72.5 // Diabetes-Intubation-OR-AMR: North-1-0 // Heart failure-Intubation-OR-AMR: North-9-0 // Obesity/BMI>-30-Intubation-OR-AMR: North-10-0 // Heart failure-Intubation-OR-AMR: North-5-0 // COPD or AST-Intubation-OR-AMR: North-3-0 // Chronic liver disease-Intubation-OR-AMR: North-2-48 // Overweight-Intubation-OR-AMR: North-2-0 // COPD or AST-ICU admission-OR-AMR: North-2-0 // Diabetes-ICU admission-OR-AMR: North-6-0 // Hypertension-ICU admission-OR-AMR: North-5-27.6 // Chronic liver disease-ICU admission-OR-AMR: North-2-0 // Cancer/Active-ICU admission-OR-AMR: North-2-0 // Overweight-ICU admission-OR-AMR: North-2-0 // Chronic liver disease-ICU admission-OR-AMR: North-2-0 // Cancer/Active-ICU admission-OR-AMR: North-2-0 // Cornore/Active-ICU admission-OR-AMR: North-2-0 // Cancer/Active-ICU Cancer/Acti | | Shah, P;
USA ²¹⁶ | cohort; electronic database;
2. Mar - 6. May;
individuals hospitalised with
COVID-19 diagnosis | 522; median 63
(50-72), nr (nr);
42% | PCR / yes,
partially, only for
BMI, not for any
other
comorbidities | in-hospital
mortality | Log / age (2 groups), sex, race, smoking, comorbidities: HTN, CAD, CHF, COPD, AST, CKD, DM, immunosupression, liver disease, CANC, BMI (3 groups) / age<65 / male | NOS
=7 | 12 estimates Chronic kidney disease-Hospital mortality-OR-AMR: North-11-19.7 // COPD-Hospital mortality-OR-AMR: North-5- 37.9 // Diabetes-Hospital mortality-OR-AMR: North-12-0 // Hypertension-Hospital mortality-OR-AMR: North-12-68.6 // Obesity/BMI>30-Hospital mortality-OR-AMR: North-11-0 // Chronic liver disease-Hospital mortality-OR-AMR: North- 3-0 // Coronary artery disease-Hospital mortality-OR-AMR: North- 5-0 // Heart failure-Hospital mortality-OR-AMR: North- 5-0 // Heart failure-Hospital mortality-OR-AMR: North- 2-0 // Asthma-Hospital mortality-OR-AMR: North-1-0 | | Sigel;
USA ²¹⁷ | cohort; multi-center, 5; 12.
Mar - 23. Apr;
individuals hospitalised with
COVID-19 diagnosis | 493, cases with
HIV: 88, without
HIV: 405; cases
with HIV: median
61 (54-67), nr (nr);
without HIV:
median 60 (55-
67), nr (nr); 75% | PCR / yes,
partially, info for
HIV, but not on
COPD | in-hospital
mortality | Competing risk model / age, sex, race/ethnicity, COVID-19 severity, COPD, HIV, smoking, laboratory values / age numeric / female | JBI=6 | 2 estimates HIV-Hospital mortality-HR-AMR: North-2-52.9 // COPD-Hospital mortality-HR-AMR: North-3-0 | | Singh(a);
USA ²¹⁸
pre-print | cohort; electronic database;
20. Jan - 16. May;
health services members
diagnosed with COVID-19 | Obesity group (n = 2459); Control group (n = 2459); nr (nr), mean 51 (19); 45% | PCR / yes,
partially, only for
BMI, not for any
other
comorbidities | case
mortality,
hospitalisa
tion | Matching / all models: age, race, ethnicity, comorbidities used for matching; comorbidity of interest in analysis: obesity / na | NOS
=8 | 2 estimates Obesity/BMI>30-Hospitalisation-RR- AMR: North-2-0 // Obesity/BMI>30- Case mortality -RR- AMR: North-2-0 | | Singh(b);
USA ²¹⁹ | cohort; electronic database;
20. Jan - 12. April;
health services members
diagnosed with COVID-19 | 250 with liver
disease, 250
without liver
disease; LD group:
nr (nr), mean 55
(14); non-LD
group: nr (nr),
mean 57 (15);
44% | PCR / yes,
partially, on liver
disease, not on
any other
comorbidities | hospitalisa
tion, case
mortality | Matching / age, race, nicotine use, CLD, BMI, HTN, and diabetes / na | other
=goo
d | 2 estimates Chronic liver disease -Hospitalisation-RR- AMR: North-1-0 // Chronic liver disease-Case mortality -RR- AMR: North-1-0 | |
Singh(c);
USA ²²⁰ | cohort; electronic database;
20. Jan - 26. May;
health services members
diagnosed with COVID-19 | 232 with IBD, 232
without IBD; IBD
group: nr (nr),
mean 51 (18); no
IBD group: nr
(nr), mean 51 (19);
37% group with
IBD; 36% without
IBD | PCR / no | hospitalisa
tion | Matching / IBD as variable of interest; matching for demographics and comorbid conditions (age, sex, race, BMI, HTN, AST and COPD, DM, CKD, CHF, CRB, nicotine dependence, alcoholrelated disorders) / na | other
=goo
d | 1 estimate Inflammatory bowel disease-Hospitalisation-RR- AMR: North-1-0 | | Study | Study design; setting,
number of hospitals;
period;
Study population | Sample size; age
(median (IQR),
mean (SD or CI)
or % in certain
age group(s)); %
of males | Given definition
of COVID-19/
pre-existing
condition (if yes,
see section 2.3
for detail) | Outcomes
relevant
for review | Adjustment method (Regression Model) /
Covariates / Reference age and sex category | Risk
of
bias | Analyses the study participated in [Main meta-analyses reported as: number of the resulted effect estimates the study contributed to; a meta-analysis is described as Condition-Outcome-Measure of association-Region-Total number of studies in the analysis-I ² %] | |--|---|--|--|---|---|--------------------|--| | Smith;
USA ²²¹ | cohort; multi-center, 4; 1.
Mar - 22. Apr;
individuals hospitalised with
COVID-19 diagnosis | 346; nr (nr), mean
67 (65–69); 56% | PCR / no | in-hospital
mortality | Log / age, COPD, DM, hyperlipidemia / age<60 / sex na | NOS
=7 | 3 estimates Diabetes-Hospital mortality-RR-AMR: North-3-0 // COPD-Hospital mortality-RR-AMR: North-1-0 // Dyslipidemia or hyperlipidemia-Hospital mortality-RR-AMR: North-1-0 | | Suleyman;
USA ²²² | case series; multi-center, 5;
9. Mar - 27. Mar;
individuals with COVID-19
diagnosis evaluated at
emergency departments or
hospitals | 463; nr (nr), mean 57 (17); 44% | PCR / yes,
partially, only for
obesity, not for
any other
comorbidities | ICU
admission,
intubation | Log / model ICU admission: age, age, race, comorbidities (severe obesity, CKD, CANC, DM, HTN, CAD); model Intubation: same variables as in model ICU admission, in addition CHF and tobacco use / age<=60 and female | NOS
=6 | 13 estimates Coronary artery disease-Intubation-OR-AMR: North-3-18.1 // Chronic kidney disease-Intubation-OR-AMR: North-5- 72.5 // Diabetes-Intubation-OR-AMR: North-11-0 // Hypertension-Intubation-OR-AMR: North-9-0 // Heart failure- Intubation-OR-AMR: North-5-0 // Obesity/BMI>40-Intubation-OR-AMR: North-2-6.5 // Cancer-Intubation-OR-AMR: North-2-6.9 // Diabetes-ICU admission-OR-AMR: North-6-0 // Hypertension-ICU admission-OR-AMR: North-6-0 // Chronic kidney disease-ICU admission-OR-AMR: North-1-0 // Obesity/BMI>40-ICU admission-OR-AMR: North-1-0 // Obesity/BMI>40-ICU admission-OR-AMR: North-1-0 | | Tartof;
USA ²²³ | cohort; electronic database;
13. Feb - 2. May;
health services members
diagnosed with COVID-19 | 6916; median 49
(nr), nr (nr); 45% | PCR (82%) / no
information or
unclear (18%) /
yes, CCI used;
DM defined and
BMI categories
given | case
mortality | Poisson / age, sex, race/ethnicity, smoking, comorbidities (CCI: CAN, hyperlipidemia, Myo, Immun, immunodeficiency or immunosuppressed state, Organ, organ transplant history, CHF, PVD, cerebrovascular disease, Resp, pulmonary disease or respiratory disease not defined, renal disease, HTN, AST, DM status (with hemoglobin A1c level <7.5%; with hemoglobin A1c level <7.5%; No DM), BMI, time variable (in weeks from week of March 22 to April 26) / age 0-40 / female | JBI=9
1% | 17 estimates Obesity/BMI>30-Case mortality-RR-AMR: North-2-0 // Asthma-Case mortality-RR-AMR: North-1-0 // Underweight-Case mortality-RR-AMR: North-1-0 // Obesity/BMI>40-Case mortality-RR-AMR: North-1-0 // Overweight-Case mortality-RR-AMR: North-1-0 // Case mortality-RR-AMR: North-1-0 // Heart failure-Case mortality-RR-AMR: North-1-0 // Heart failure-Case mortality-RR-AMR: North-1-0 // Cerebrovascular/Stroke-Case mortality-RR-AMR: North-1-0 // Hypertension-Case mortality-RR-AMR: North-1-0 // Dyslipidemia or hyperlipidemia-Case mortality-RR-AMR: North-1-0 // Immunosuppression-Case mortality-RR-AMR: North-1-0 // Immunosuppression-Case mortality-RR-AMR: North-1-0 // Peripheral vascular disease-Case mortality-RR-AMR: North-1-0 // Peripheral vascular disease-Case mortality-RR-AMR: North-1-0 // Respiratory di | | van
Gerwen;
USA ²²⁴ | cohort; health system; 1.
Mar -1. Apr;
individuals identified via the
electronic medical record
system across a large New
York City health system
diagnosed with COVID-19 | 3703, hospitalised
2015; nr (nr),
mean 57 (18);
55% | PCR / yes,
partially, only for
BMI, not for any
other
comorbidities | hospitalisa
tion, in-
hospital
mortality,
mechanica
l
ventilation | Log / age, sex, race, BMI, smoking, comorbidities (HTN, CAD, ART, CHF, peripheral vascular disease, CVA/TIA, DEM, DM, hypothyroidism, CKD, CANC, AST, COPD, VTE) / age 18-40 / female | NOS =7 | 45 estimates Chronic kidney disease-Hospital mortality-OR-AMR: North-11-19.7 // COPD-Hospital mortality-OR-AMR: North-5-37.9 // Diabetes-Hospital mortality-OR-AMR: North-12-0 // Hypertension-Hospital mortality-OR-AMR: North-12-68.6 // Obesity/BMI>-30-Hospital mortality-OR-AMR: North-11-0 // Arrhythmia-Hospital mortality-OR-AMR: North-2-0 // Coronary artery disease-Hospital mortality-OR-AMR: North-6-10.2 // Cancer-Hospital mortality-OR-AMR: North-5-0 // Heart failure-Hospital mortality-OR-AMR: North-8-3 // Orerweight-Hospital mortality-OR-AMR: North-3-0 // V.thromboembolism-Hospital mortality-OR-AMR: North-2-66.3 // Overweight-Hospital mortality-OR-AMR: North-3-0 // V.thromboembolism-Hospital mortality-OR-AMR: North-1-0 // Peripheral vascular disease-Hospital mortality-OR-AMR: North-1-0 // Asthma-Hospitalisation-OR-AMR: North-3-66.6 // Cancer-Hospitalisation-OR-AMR: North-1-78. // Heart failure-Hospitalisation-OR-AMR: North-3-66.6 // Cancer-Hospitalisation-OR-AMR: North-1-78. // Heart failure-Hospitalisation-OR-AMR: North-4-80.7 // COPD-Hospitalisation-OR-AMR: North-4-15.2 // Diabetes-Hospitalisation-OR-AMR: North-8-37.6 // Hypertension-Hospitalisation-OR-AMR: North-3-10. // Chronic kidney disease-Hospitalisation-OR-AMR: North-1-18 // Overweight-Hospitalisation-OR-AMR: North-1-0 // Arrhythmia-Hospitalisation-OR-AMR: North-1-0 // Cerebrovascular/Stroke-Hospitalisation-OR-AMR: North-1-0 // Arrhythmia-Hospitalisation-OR-AMR: North-1-0 // Peripheral vascular disease-Hospitalisation-OR-AMR: North-1-0 // Obesity/BMI>-30-Hospitalisation-OR-AMR: North-1-0 // Cerebrovascular/Stroke-Hospitalisation-OR-AMR: North-1-0 // Heart failure-Intubation-OR-AMR: North-1-0 //
Obesity/BMI>-30-Hospitalisation-OR-AMR: North-1-0 // Cerebrovascular/Stroke-Hospitalisation-OR-AMR: North-1-1-0 // Heart failure-Intubation-OR-AMR: North-1-0 // Obesity/BMI>-30-Hospitalisation-OR-AMR: North-1-0 // Obesity/BMI>-30-Hospitalisation-OR-AMR: North-1-0 // Obesity/BMI>-30-Hospitalisation-OR-AMR: North-1-0 // Obesity/BMI>-30-Hospitalisation-OR-AMR: Nort | | Wang, A-
L; USA ²²⁵
pre-print | cohort; multi-center, 8 +
hospitals and more than 400
ambulant; nr - 15. Apr;
health services members
diagnosed with COVID-19 | 7592; 49%<60;
55% | PCR / no | case
mortality | Log / age, nr of comorbidities (0/1-3/4+: HTN, CKD, COPD, AST, obesity, DM, HIV/AIDS, CANC), comorbidities (AST, CKD), drugs administered at provider, vital signs, smoking status, residential area / age <40 /sex na | JBI=6
4% | 2 estimates Chronic kidney disease-Case mortality-OR-AMR: North-3-76.9 // Asthma-Case mortality-OR-AMR: North-1-0 | | Study | Study design; setting,
number of hospitals;
period;
Study population | Sample size; age
(median (IQR),
mean (SD or CI)
or % in certain
age group(s)); %
of males | Given definition
of COVID-19/
pre-existing
condition (if yes,
see section 2.3
for detail) | Outcomes
relevant
for review | Adjustment method (Regression Model) /
Covariates / Reference age and sex category | Risk
of
bias | Analyses the study participated in [Main meta-analyses reported as: number of the resulted effect estimates the study contributed to; a meta-analysis is described as Condition-Outcome-Measure of association-Region-Total number of studies in the analysis-I ² %] | |--|--|--|--|--|---|------------------------------------|---| | Yehia;
USA ²²⁶ | cohort; multi-center, 92; 19.
Feb - 31. May; follow-up
until 25. Jun;
individuals hospitalised with
COVID-19 diagnosis | 11210; median 61
(46-74), nr (nr);
50% | PCR / yes,
comorbidites
were used
according to
Elixhauser Index | in-hospital
mortality | Cox / age, sex, comorbidities (Elixhauser
Comorbidity Score ECI, AST, CANC, CKD,
CLD, COPD, CHF, CAD, DM, HTN, obesity,
Organ, organ transplant history), other: race,
Insurance, neighbourhood deprivation index
NDI / age 18-49 / female | JBI=8
2% | 8 estimates Coronary artery disease-Hospital mortality-HR-AMR: North-3-0 // Heart failure-Hospital mortality-HR-AMR: North-3-87.2 // Chronic kidney disease-Hospital mortality-HR-AMR: North-4-71.9 // Diabetes-Hospital mortality-HR-AMR: North-5-0 // Obesity/BMI>-30-Hospital mortality-HR-AMR: North-4-0 // Cancer-Hospital mortality-HR-AMR: North-4-0 // Asthma-Hospital mortality-HR-AMR: North-2-79.1 // COPD-Hospital mortality-HR-AMR: North-3-0 | | Zimmerma
n; USA ²²⁷
pre-print | cohort; multi-center, 7; 1.
Mar -17. Jul;
individuals hospitalised with
COVID-19 diagnosis and on
invasive mechanical
ventilation | 304; nr (nr), mean 63 (13); 63% | PCR / yes, for
overweight and
obesity | in-hospital
mortality
of patients
who
required
mechanica
I
ventilation
(Intubation
mortality) | Log/ age, sex, race, ethnicity, BMI categories / age 61-70 / male | JBI=8
2% | Analysis of evidence for specific population groups – patients on invasive mechanical ventilation | | Regions of Am | erica: South/Latin | 11321: North | | | | | I | | Baqui;
Brazil ²²⁸ | case series; multi-center; 27.
Feb - 4. May;
individuals hospitalised with
COVID-19 diagnosis | 11321; North Brazil - survivors: nr (nr), mean 47 (19), non- survivors: nr (nr), mean 65 (16); Central-south Brazil: survivors: nr (nr), mean 52 (17), non survivors: nr (nr), mean 67 (16); North: survivors: 33%, non- survivors: 67%; Central-south: survivors: 58%, non survivors: 42% | PCR / no | in-hospital
mortality | Cox / age, sex, ethnic group, comorbidities (CVD, AST, DM, Resp, obesity, immun, renal disease, liver disease, neurological disease) / age <40 /sex na | other
=
low-
mode
rate | 9 estimates Neurological disease-Hospital mortality-HR-AMR: South/Latin-1-0 // Obesity/BMI>30-Hospital mortality-HR-AMR: South/Latin-2-79.5 // Respiratory disease-Hospital mortality-HR-AMR: South/Latin-1-0 // Chronic kidney disease-Hospital mortality-HR-AMR: South/Latin-2-73.7 // Immunosuppression-Hospital mortality-HR-AMR: South/Latin-2-0 // Chronic liver disease-Hospital mortality-HR-AMR: South/Latin-1-0 // Cardiovascular disease-Hospital mortality-HR-AMR: South/Latin-1-0 // Asthma-Hospital mortality-HR-AMR: South/Latin-2-0 | | Bello-
Chavolla;
Mexico ²²⁹ | cohort; electronic database;
nr;
individuals with COVID-19
diagnosis as reported by
Mexican Ministry of Health | 51633; nr (nr),
mean 47 (16);
58% | PCR / no | case
mortality | Cox, Log / age, comorbidities (DM, obesity, pneumonia, CKD, COPD, Immun) / age >=65, <40 / sex na | NOS
=6 | 6 estimates Diabetes-Case mortality-HR-AMR: South/Latin-3-52.6 // Obesity/BMI>30-Case mortality-HR-AMR: South/Latin-3-77 // Respiratory disease-Case mortality-HR-AMR: South/Latin-2-80 // Chronic kidney disease-Case mortality-HR-AMR: South/Latin-3-88.9 // COPD-Case mortality-HR-AMR: South/Latin-2-39.8 // Immunosuppression-Case mortality-HR-AMR: South/Latin-2-43.4 and Analysis of age-stratified estimates | | Study | Study design; setting,
number of hospitals;
period;
Study population | Sample size; age
(median (IQR),
mean (SD or CI)
or % in certain
age group(s)); %
of males | Given definition
of COVID-19/
pre-existing
condition (if yes,
see section 2.3
for detail) | Outcomes
relevant
for review | Adjustment method (Regression Model) /
Covariates / Reference age and sex category | Risk
of
bias | Analyses the study participated in [Main meta-analyses reported as: number of the resulted effect estimates the study contributed to; a meta-analysis is described as Condition-Outcome-Measure of association-Region-Total number of studies in the analysis-I ² %] | |--|--|--|--|---|---|--------------------
--| | Carrillo-
Vega;
Mexico ²³⁰ | cohort; multi-center; nr - 23.
April;
diagnosed or suspected
COVID-19 cases | 10544; nr (nr),
mean 46 (16);
58% | no information or
unclear / no | hospitalisa
tion, case
mortality | Log / model hospitalisation: age, sex, comorbidities (CKD, COPD, HTN, obesity, DM, DM_HTN_obesity, DM_HTN, DM_obesity, HTN_obesity), complication (pneumonia), private services; model risk of death (case mortality): sex, age, CKD, COPD, HTN obesity, DM, Immuno-Suppressed, complication (pneumonia), hospitalisation, intubation, ICU, private services / age 25-49 / female | NOS
=6 | 11 estimates Chronic kidney disease-Hospitalisation-OR-AMR: South/Latin-3-0 // COPD-Hospitalisation-OR-AMR: South/Latin-2-0 // Hypertension-Hospitalisation-OR-AMR: South/Latin-2-73 // Obesity/BMI>30-Hospitalisation-OR-AMR: South/Latin- 3-56.2 // Diabetes-Hospitalisation-OR-AMR: South/Latin-3-88.8 // Chronic kidney disease-Case mortality-OR-AMR: South/Latin-1-0 // COPD-Case mortality-OR-AMR: South/Latin-1-0 // Hypertension-Case mortality-OR-AMR: South/Latin-2-70.7 // Obesity/BMI>30-Case mortality-OR-AMR: South/Latin-1-0 // Diabetes-Case mortality-OR-AMR: South/Latin-1-0 // Immunosuppression-Case mortality-OR-AMR: South/Latin-1-0 | | Denova-
Gutiérrez;
Mexico ²³¹ | cohort; multi-center; 27. Feb - 10. Apr; individuals hospitalised with COVID-19 diagnosis | 3,844; nr (nr),
mean 45 (16);
58% | PCR / no | ICU
admission
(=severe
COVID-
19) | Log / age, sex, smoking status, obesity, history of chronic diseases (HTN, DM, obesity, CVD, CKD, immunosuppression), place of care, selected health unit that monitors respiratory disease and drug treatment (USMER) / age /different OR for each sex (men and women) are in subgroups | NOS
=8 | 3 estimates Obesity/BMI>30-ICU admission-OR-AMR: South/Latin-1-0 // Diabetes-ICU admission-OR-AMR: South/Latin-1-0 // Hypertension-ICU admission-OR-AMR: South/Latin-1-0 | | Escalera-
Antezana;
Bolivia ²³² | cohort; multi-center; 2. Mar
- 29. Mar;
first individuals in Bolivia
registered by Ministry of
Health diagnosed with
COVID-19 | 107; median 44
(18), nr (nr); 51% | PCR / no | case
mortality | Log / age, comorbidities (HTN) / age<60 / male | NOS
=6 | 1 estimate Hypertension-Case mortality-OR-AMR: South/Latin-2-70.7 | | Giannouch
o;
Mexico ²³³ | case series; multi-center; nr - 31. May; suspected COVID-19 cases in a publicly available individual level dataset released by the Mexican Health Ministry | 236?439 / 89?756
COVID -19
positive; nr (nr),
mean 46 (16);
51% all, 56%
COVID-19
positive | PCR / no | hospitalisa
tion | Log / model 1: Age, sex, Mexican nationality, smoking, comorbidities (obesity, DM, HTN, Immun, CVD, AST, COPD, chronic renal disease); Model 2: age, sex, Mexican nationality, smoking, overall number of comorbidities / age 18 - 44 / male | NOS
=8 | 8 estimates Chronic kidney disease-Hospitalisation-OR-AMR: South/Latin-3-0 // COPD-Hospitalisation-OR-AMR: South/Latin-2-0 // Hypertension-Hospitalisation-OR-AMR: South/Latin-2-73 // Obesity/BMI>30-Hospitalisation-OR-AMR: South/Latin- 3-56.2 // Diabetes-Hospitalisation-OR-AMR: South/Latin-3-88.8 // Immunosuppression-Hospitalisation-OR-AMR: South/Latin-1-0 // Cardiovascular disease-Hospitalisation-OR-AMR: South/Latin-2-64.7 // Asthma-Hospitalisation-OR-AMR: South/Latin-1-0 | | Murillo-
Zamora;
Mexico ²³⁴ | cohort; electronic database;
4. Mar - 15. Aug;
individuals hospitalised with
COVID-19 diagnosis | 5393; nr (nr), nr (nr); 61% | PCR / no | in-hospital
mortality | Cox / sex, age (30-44,45-59,60+), comorbidities (obesity, AST, COPD, DM, HTN, immunosuppression, CKD), smoking/ age 20-29/female | NOS
=9 | 7 estimates Obesity/BMI>30-Hospital mortality-HR-AMR: South/Latin-2-79.5 // Chronic kidney disease-Hospital mortality-HR-AMR: South/Latin-2-74.6 // Diabetes-Hospital mortality-HR-AMR: South/Latin-2-73.7 // Immunosuppression-Hospital mortality-HR-AMR: South/Latin-2-0 // COPD-Hospital mortality-HR-AMR: South/Latin-1-0 // Hypertension-Hospital Hypertension-H | | Soares;
Brazil ²³⁵ | cohort; electronic database;
29. Feb - 11. Jun;
individuals from Espírito
Santo State, Brazil, in
registry diagnosed with
COVID-19 | 10713; nr; 45% | PCR / no | hospitalisa
tion, in-
hospital
mortality | Log / model 1: age, sex, race, comorbidities
(CVD, DM, kidney diseases, obesity, Resp),
smoking, symptoms; model 2: age,
comorbidities (CVD, kidney diseases),
symptoms / model 1: age <60/female; model 2:
age<60/ sex na | NOS
=8 | 7 estimates Chronic kidney disease-Hospitalisation-OR-AMR: South/Latin-3-0 // Obesity/BMI>30-Hospitalisation-OR-AMR: South/Latin-3-5.2 // Diabetes-Hospitalisation-OR-AMR: South/Latin-3-88.8 // Cardiovascular disease-Hospitalisation-OR-AMR: South/Latin-1-0 // Cardiovascular disease-Hospital mortality-OR-AMR: South/Latin-1-0 // Chronic kidney disease-Hospital mortality-OR-AMR: South/Latin-1-0 // Chronic kidney disease-Hospital mortality-OR-AMR: South/Latin-1-0 | | Solís;
Mexico ²³⁶ | cohort; electronic database;
nr - 18. Apr;
individuals hospitalised with
COVID-19 diagnosis | 7497; median 46
(nr), nr (nr); 58% | PCR / no | in-hospital
mortality | Cox / sex, age, comorbidities (HTN, obesity, CVD, Immun, COPD, DM, AST, CKD), smoking, institution / age 45-49/sex na | NOS
=5 | 8 estimates Diabetes-Case mortality-HR-AMR: South/Latin-3-52.6 // Obesity/BMI>30-Case mortality-HR-AMR: South/Latin-3-77 // Chronic kidney disease-Case mortality-HR-AMR: South/Latin-3-88.9 // COPD-Case mortality-HR-AMR: South/Latin-2-39.8 // Immunosuppression-Case mortality-HR-AMR: South/Latin-2-43.4 // Hypertension-Case mortality-HR-AMR: South/Latin-1-0 // Cardiovascular disease-Case mortality-HR-AMR: South/Latin-2-98.2 // Asthma-Case mortality-HR-AMR: South/Latin-1-0 | | Study | Study design; setting,
number of hospitals;
period;
Study population | Sample size; age
(median (IQR),
mean (SD or CI)
or % in certain
age group(s)); %
of males | Given definition
of COVID-19/
pre-existing
condition (if yes,
see section 2.3
for detail) | Outcomes
relevant
for review | Adjustment method (Regression Model) /
Covariates / Reference age and sex category | Risk
of
bias | Analyses the study participated in [Main meta-analyses reported as: number of the resulted effect estimates the study contributed to; a meta-analysis is described as Condition-Outcome-Measure of association-Region-Total number of studies in the analysis-I ² %] | |---|---|--|--|--|---|--------------------|--| | Sousa;
Brazil ²³⁷ | cohort; electronic database;
nr - 14. Apr;
individuals with
diagnosed
COVID-19 identified from
registry | 2070; median 44
(34-59; 76%), nr
(nr); ≥ 60 (24%);
49% | PCR / no | case
mortality | Cox / age (elderly), comorbidities (CVD, DM, hematologic disease, neurologic disease, obesity, pneumopathies, renal disease) / na | NOS
=8 | 6 estimates Diabetes-Case mortality-HR-AMR: South/Latin-3-52.6 // Obesity/BMI>30-Case mortality-HR-AMR: South/Latin-3-77 // Respiratory disease-Case mortality-HR-AMR: South/Latin-2-80 // Chronic kidney disease-Case mortality-HR-AMR: South/Latin-3-88.9 // Cardiovascular disease-Case mortality-HR-AMR: South/Latin-2-98.2 // Neurological disease-Case mortality-HR-AMR: South/Latin-1-0 | | Western Pacifi | ic Region | | | | | | | | Bi;
China ²³⁸
pre-print | cohort; single-center; 11.
Jan - 10. Mar;
patients with diagnosed
COVID-19 hospitalised in
Shenzen | 420; nr (nr), mean
45 (35); 48% | PCR / no | ICU
admission | competing risk model / model 1: age, sex, any comorbidity; model 2: age, sex, comorbidities (HTN, DM, cardiac diseases, Resp, pulmonary disease or respiratory disease not defined, CRB, number of comorbidities) / age 0-59 / female; model 2: age 0-39 / female | other
= low | 5 estimates Dementia-Hospital mortality-OR-EUR-4-49.7 // Hypertension-ICU admission-HR-WPR-1-0 // Diabetes-ICU admission-HR-WPR-1-0 // Respiratory disease-ICU admission-HR-WPR-1-0 // Cerebrovascular/Stroke-ICU admission-HR-WPR-1-0 | | Chen.F;
China ²³⁹ | cohort; single-center; 1. Jan - 15. Feb; individuals hospitalised with COVID-19 diagnosis | 660; median 55
(34?68), nr (nr);
45% | no information or
unclear / no | in-hospital
mortality | Log / age, comorbidities (HTN, CRB), SOFA, laboratory values / age>60 vs. <=60 / sex na | NOS
=7 | 2 estimates Hypertension-Hospital mortality-OR-WPR-9-0 // Cerebrovascular/Stroke-Hospital mortality-OR-WPR-3-61.1 | | Chen.J;
China ²⁴⁰ | cohort; single-center; 18.
Jan - 27. Mar;
individuals hospitalised with
COVID-19 diagnosis | 3309; median 62
(49-69), nr (nr);
50% | PCR , clinical
diagnosis (%
unknown) / types
of cancer | in-hospital
mortality | Log / age, sex, comorbidities (HTN, CVD, CRB, CANC, CKD, COPD), days from onset to clinical presentation / to admission / Age<=45 / male | NOS
=7 | 6 estimates Hypertension-Hospital mortality-OR-WPR-9-0 // Cerebrovascular/Stroke-Hospital mortality-OR-WPR-3-61.1 // Cardiovascular disease-Hospital mortality-OR-WPR-2-0 // Cancer-Hospital mortality-OR-WPR-4-0 // Chronic kidney disease-Hospital mortality-OR-WPR-2-0 // COPD-Hospital mortality-OR-WPR-4-0 | | Chen.R;
China ²⁴¹ | cohort; multi-center, 575; nr - 31. Jan; individuals hospitalised with COVID-19 diagnosis | 1590; fatal cases:
median 69 (51-
86), nr (nr); non-
fatal cases: median
48 (1-94), nr (nr);
fatal cases: 78%,
non-fatal cases:
57% | PCR / no | in-hospital
mortality | Cox / age, laboratory values, complications, comorbidities (CHD, CVD) / age 65-74 vs <65 and >=75 vs <65 / sex na | NOS
=7 | 2 estimates
Coronary artery disease-Hospital mortality-HR-WPR-3-63.7 // Cardiovascular disease-Hospital mortality-HR-WPR-7-0 | | Dai;
China ²⁴² | cohort; multi-center, 14; 1.
Jan - 24. Feb;
individuals hospitalised with
COVID-19 diagnosis | 641 (105 cancer patients matched to 536 non-cancer); cancer patients: median 64 (14), nr (nr); non-cancer: median 63 (14), nr (nr); 55% cancer group, 46% non-cancer group | PCR / cancer types | in-hospital
mortality,
ICU
admission,
intubation | Log / age, sex, comorbidities (CANC, DM, HTN, COPD), smoking / na | NOS
=9 | 11 estimates Hypertension-Hospital mortality-OR-WPR-9-0 // Cancer-Hospital mortality-OR-WPR-4-0 // COPD-Hospital mortality-OR-WPR-4-0 // Diabetes-Hospital mortality-OR-WPR-4-0 // Diabetes-Hospital mortality-OR-WPR-1-0 // Cancer-ICU admission-OR-WPR-1-0 // Hypertension-ICU admission-OR-WPR-1-0 // COPD-ICU admission-OR-WPR-1-0 // Cancer-Intubation-OR-WPR-1-0 // Diabetes-Intubation-OR-WPR-1-0 // Hypertension-Intubation-OR-WPR-1-0 | | Du, R;
China ²⁴³
pre-print | case series; single-center;
25. Dec - 7. Feb;
individuals hospitalised with
COVID-19 diagnosis | 179; median 57
(49-68), nr (nr);
54% | PCR / no | ICU
admission | Log / age, number of comorbidities, laboratory values, detection of SARS-CoV-2 / age< 60 / nr | NOS
=
high | Risk "number of comorbidities" was excluded from meta-analyses | | Du, RH;
China ²⁴⁴ | cohort; single-center; 25.
Dec - 7. Feb;
individuals hospitalised with
COVID-19 diagnosis | 179 (136 COVID-
19 positive); nr
(nr), mean 58 (14);
54% | PCR / no | in-hospital
mortality | Log / age, comorbidities (CVD or CBR),
laboratory values / Age >=65 years /sex nr | NOS
=8 | Risk "CVD or CBR" due to very composite definition of pre-existing condition. i.e. either cardio-vascular od cerebra-
vascular disease | | Study | Study design; setting,
number of hospitals;
period;
Study population | Sample size; age
(median (IQR),
mean (SD or CI)
or % in certain
age group(s)); %
of males | Given definition
of COVID-19/
pre-existing
condition (if yes,
see section 2.3
for detail) | Outcomes
relevant
for review | Adjustment method (Regression Model) /
Covariates / Reference age and sex category | Risk
of
bias | Analyses the study participated in [Main meta-analyses reported as: number of the resulted effect estimates the study contributed to; a meta-analysis is described as Condition-Outcome-Measure of association-Region-Total number of studies in the analysis-I ² %] | |--|---|--|--|------------------------------------|--|--------------------|---| | Feng;
China ²⁴⁵ | cohort; multi-center, 3; 1.
Jan - 15. Feb;
individuals hospitalised with
COVID-19 diagnosis | 476 / 337 included
in adjusted
analysis; median
53 (40-64), nr (nr);
57% | PCR / no | in-hospital
mortality | Cox / age, laboratory values, comorbidities (HTN, CVD, DM) / age< 75 / sex na | NOS
=
high | 3 estimates
Cardiovascular disease-Hospital mortality-HR-WPR-7-0 // Hypertension-Hospital mortality-HR-WPR-8-20.3 // Diabetes-Hospital mortality-HR-WPR-10-17.5 | | Gao;
China ²⁴⁶ | cohort; single-center; 5. Feb - 15. Mar; individuals hospitalised with COVID-19 diagnosis | 2877 / 850 patients with history of hypertension; without HTN: nr (nr), mean 55 (15); with HTN: nr (nr), mean 64 (11); 51% group without HTN, 52% group with HTN | PCR / yes,
partially, for HTN
only | in-hospital
mortality | Cox / age, comorbidities (fatigue, HTN, Myo,
Renal failure, chronic heart failure), laboratory
values / age per year / sex na | NOS
>=5-
<=8 | 4 estimates Hypertension-Hospital mortality-HR-WPR-8-20.3 // Infarction-Hospital mortality-HR-WPR-1-0 // Chronic kidney disease-Hospital mortality-HR-WPR-3-92.4 // Heart failure-Hospital mortality-HR-WPR-1-0 | | Gu, T,
Chu;
China ²⁴⁷ | case-control; multi-center;
18. Dec - 8. Mar;
individuals diagnosed with
COVID-19 identified from
the news or the
national/provincial/municipa
I health commissions of
China | 275 (cases: 94
controls: 181;
median 68 (22), nr
(nr); cases: median
72 (16), nr (nr);
controls: median
67 (22), nr (nr);
63%; cases: 60%,
controls: 65% | PCR / no | case
mortality | Cox / model 1: age, sex, time, comorbidities (cardiac diseases, CRB, COPD, renal failure); model 2: age, sex, time, comorbidity score / na | NOS
=7 | 4 estimates Coronary artery disease-Case mortality-HR-WPR-2-87.7 // Cerebrovascular/Stroke-Case mortality-HR-WPR-2-31.9 // COPD-Case mortality-HR-WPR-2-0 // Chronic kidney disease-Case mortality-HR-WPR-2-0 | | Huang;
China ²⁴⁸ | cohort; 2 hospitals; after
outbreak 2020 in Wuhan (no
specific date given);
individuals hospitalised with
COVID-19 diagnosis | 310; median 62
(49-70), nr (nr);
56% | PCR / no | in-hospital
mortality | Log / age, sex, comorbidities (HTN) / age
numeric / male | MIN
ORS
=10 | 1 estimate
Hypertension-Hospital mortality-OR-WPR-9-0 | | Hwang;
Korea ²⁴⁹ | cohort; 2 hospitals; 1. Feb -
25. Mar;
individuals hospitalised with
COVID-19 diagnosis | 103; nr (nr), mean
68 (15); 50% | PCR / yes,
partially, chronic
lung disease,
dementia=
Alzheimers | in-hospital
mortality | Cox / age, comorbidities (DM, chronic lung disease, CVD, DEM (Alzheimer), stroke) / na | NOS
=8 | 5 estimates Cardiovascular disease-Hospital mortality-HR-WPR-7-0 // Diabetes-Hospital mortality-HR-WPR-10-17.5 // Respiratory disease-Hospital mortality-HR-WPR-2-61.2 // Dementia-Hospital mortality-HR-WPR-1-0 // Cerebrovascular/Stroke-Hospital mortality-HR-WPR-4-0 | | Kim.M;
Korea ²⁵⁰ | cohort; multi-center, 5; 18.
Feb - 31. Mar;
individuals hospitalised with
COVID-19 diagnosis | 470, non-DM und
DM each 235;
non-DM: nr (nr),
mean 56 (18);
DM: nr (nr), mean
68 (12); non-DM:
40%,
DM: 45% | PCR / yes, for DM | in-hospital
mortality | Cox, Matching / age, sex, comorbidities (DM, HTN, CRD, CVD, CKD, Resp, CANC) / na | NOS
=8 | I estimate Diabetes-Hospital mortality-HR-WPR-10-17.5 | | Lee, HY;
Korea ²⁵¹ | cohort; electronic database;
19. Jan - 16. Mar;
individuals diagnosed with
COVID-19 | 8266; nr (nr),
mean 44 (19);
39% | PCR / no | case
mortality | Cox / age (per year increase), age, sex,
comorbidities (HTN, DM, CAD, stroke, COPD,
CANC, CKD), medications / age numeric/male | other
=high | 7 estimates Coronary artery disease-Case mortality-HR-WPR-2-87.7 // Cerebrovascular/Stroke-Case mortality-HR-WPR-2-31.9 // COPD-Case mortality-HR-WPR-2-0 // Chronic kidney disease-Case mortality-HR-WPR-2-0 // Hypertension-Case mortality-HR-WPR-1-0 // Diabetes-Case mortality-HR-WPR-1-0 // Cancer-Case mortality-HR-WPR-1-0 | | Study | Study design; setting,
number of hospitals;
period;
Study population | Sample size; age
(median (IQR),
mean (SD or CI)
or % in certain
age group(s)); %
of males | Given definition
of COVID-19/
pre-existing
condition (if yes,
see section 2.3
for detail) | Outcomes
relevant
for review | Adjustment method (Regression Model) /
Covariates / Reference age and sex category | Risk
of
bias | Analyses the study participated in [Main meta-analyses reported as: number of the resulted effect estimates the study contributed to; a meta-analysis is described as Condition-Outcome-Measure of association-Region-Total number of studies in the analysis-I ² %] | |---------------------------------|---|---|--|------------------------------------|--|--------------------|--| | Li.J;
China ²⁵² | cohort; single-center; 23.
Jan - 14. Mar;
individuals hospitalised with
COVID-19 diagnosis | 596, with CVD:
215, without
CVD: 384; nr (nr),
mean 58 (47-68);
47% | PCR / no | in-hospital
mortality | Cox / sex, age, comorbidities (DM, malignancy, HTN, coronary heart disease, ART, CVD) / age<65 / sex na | NOS
=8 | 6 estimates Coronary artery disease-Hospital mortality-HR-WPR-3-63.7 // Hypertension-Hospital mortality-HR-WPR-8-20.3 // Diabetes-Hospital mortality-HR-WPR-10-17.5 // Cerebrovascular/Stroke-Hospital mortality-HR-WPR-4-0 // Cancer-Hospital mortality-HR-WPR-4-8.9 // Arrhythmia-Hospital mortality-HR-WPR-1-0 | | Li.Q;
China ²⁵³ | cohort; multi-center, 5; 20.
Jan - 4. Apr;
individuals hospitalised with
COVID-19 diagnosis | 1859, cancer: 65;
non-cancer: 1794;
median 59 (45-
68), nr (nr); 50% | PCR and/or blood
test for SARS-
Cov-2 IgG/IgM
antibodies /yes | in-hospital
mortality | Cox / model 1: age (per year increase), sex, comorbidities (CANC), COVID-19 severity, smoking, laboratory values; model 2: age (<65), sex, comorbidities (CANC), COVID-19 severity, smoking, laboratory values; model 3: age (>=65), sex, comorbidities (CANC), COVID-19 severity, smoking, laboratory values / age numeric/female | NOS
=6 | 1 estimate Cancer-Hospital mortality-HR-WPR-4-8.9 and Analysis of age-stratified estimates | | Meng;
China ²⁵⁴ | cohort; single-center; 18.
Jan - 27. Mar;
individuals hospitalised with
COVID-19 diagnosis | 2665; cancer:
median 62 (16), nr
(nr); non-cancer:
median 58 (16), nr
(nr); cancer: 56%;
non-cancer: 50% | PCR / no | in-hospital
mortality | Log / sex, age, (4 groups), comorbidities (HTN, coronary heart disease, DM, COPD, CKD, CRB, hepatitits, tuberculosis, tumor) / age <=49/male | NOS
=7 | 9 estimates Hypertension-Hospital mortality-OR-WPR-9-0 // Cerebrovascular/Stroke-Hospital mortality-OR-WPR-3-61.1 // Cancer-Hospital mortality-OR-WPR-4-0 // Chronic kidney disease-Hospital mortality-OR-WPR-2-0 // COPD-Hospital mortality-OR-WPR-4-0 // Diabetes-Hospital mortality-OR-WPR-4-84.8 // Coronary artery disease-Hospital mortality-OR-WPR-2-0 // Hepatitis-Hospital mortality-OR-WPR-1-0 // Tuberculosis-Hospital mortality-OR-WPR-1-0 | | Moon;
Korea ²⁵⁵ | cohort; 2 hospitals; 18. Feb - 30. Jun; individuals hospitalised with COVID-19 diagnosis | 352; median 57
(38-72), nr (nr);
41% | PCR / no | in-hospital
mortality | Log / age, comorbidities (malignancy, DM),
body temperature / age < 70 /sex na | NOS
=7 | 2 estimates
Cancer-Hospital mortality-OR-WPR-4-0 // Diabetes-Hospital mortality-OR-WPR-4-84.8 | | Shang;
China ²⁵⁶ | cohort; multi-center, 3; 1.
Jan - 31. Mar;
individuals hospitalised with
COVID-19 diagnosis
(severe COVID-19) | 2529; median 66
(57-73), nr (nr);
65% | PCR or viral sequencing / no | in-hospital
mortality | Log / age, comorbidities (cardiac diseases),
laboratory values / age<60 / sex na | other
=low | 1 estimate
Heart disease-Hospital mortality-OR-WPR-2-0 | | Shi, Q;
China ²⁵⁷ | cohort; 2 hospitals; 1. Jan -
8. Mar;
individuals hospitalised with
COVID-19 diagnosis | 306; median 64
(56-72), nr (nr);
49% | PCR / yes,
partially,
information on
patients with DM
provided | in-hospital
mortality | Cox / age, sex, comorbidities (HTN, CVD, Resp), laboratory values / age>=70 /na | NOS
=9 | 4 estimates Cardiovascular disease-Hospital mortality-HR-WPR-7-0 // Hypertension-Hospital mortality-HR-WPR-8-20.3 // Diabetes-Hospital mortality-HR-WPR-10-17.5 // Respiratory disease-Hospital mortality-HR-WPR-2-61.2 | | Shi, S;
China ²⁵⁸ | cohort; single-center; 20.
Jan - 10. Feb;
individuals hospitalised with
COVID-19 diagnosis | 416; median 64
(21-95), nr (nr);
49% | PCR / no | in-hospital
mortality | Cox /age, comorbidities (CVD, CRB, DM, COPD, CANC, Resp), laboratory values / na | NOS
=6 | 6 estimates Cardiovascular disease-Hospital mortality-HR-WPR-7-0 // Diabetes-Hospital mortality-HR-WPR-10-17.5 // Chronic kidney disease-Hospital mortality-HR-WPR-3-92.4 // Cerebrovascular/Stroke-Hospital mortality-HR-WPR-4-0 // Cancer-Hospital mortality-HR-WPR-4-8.9 // COPD-Hospital mortality-HR-WPR-3-0 | | Sun;
China ²⁵⁹ | case-control; single-center;
29. Jan - 5. Mar;
individuals hospitalised with
COVID-19 diagnosis | 244; Discharged:
median 67 (64-
72), nr (nr);
Deceased: median
72 (66-78), nr (nr);
54% | no information or unclear / no | in-hospital
mortality | Log / age, sex, comorbidities (HTN, Resp), laboratory values / age<60 / male | NOS
=7 | 2 estimates Hypertension-Hospital mortality-OR-WPR-9-0 // Respiratory disease-Hospital mortality-OR-WPR-1-0 | | Sy;
Philippines | cohort; electronic database;
17. May - 15. Jun;
individuals hospitalised with
COVID-19 diagnosis | 530; nr (nr), mean
49 (19); 0,7 | PCR / no | in-hospital
mortality | Log, Matching / age, sex, and other comorbid conditions (COPD, AST, DM, HTN, CANC, renal disease, cardiac disease, and autoimmune disorders), tuberculosis variable of interest in model / na | NOS
=8 | 3 estimates Tuberculosis-Hospitalisation-RR-WPR-1-0 // Tuberculosis-Case mortality-RR-WPR-1-0 // Tuberculosis-Hospital mortality-RR-WPR-1-0 | | Study | Study design; setting,
number of hospitals;
period;
Study population | Sample size; age
(median (IQR),
mean (SD or CI)
or % in certain
age group(s)); %
of males | Given definition
of COVID-19/
pre-existing
condition (if yes,
see section 2.3
for detail) | Outcomes
relevant
for review | Adjustment method (Regression Model) /
Covariates / Reference age and sex category | Risk
of
bias | Analyses the study participated in [Main meta-analyses reported as: number of the resulted effect estimates the study contributed to; a meta-analysis is described as Condition-Outcome-Measure of association-Region-Total number of studies in the analysis-I ² %] | |-----------------------------------|---|--|--|------------------------------------|---|--------------------------------|---| | Tai;
China ²⁶¹ | cohort; electronic database;
5. Feb - 10. Mar;
individuals
hospitalised with
COVID-19 diagnosis | 332; median 51
(40-59), nr (nr);
39% | PCR / yes,
partially on CVD | case ICU | Log / age, sex, comorbidities (CVD, DM, lung diseases), chest tightness / na | NOS
=8 | The outcome was excluded from the reporting | | Wang, D;
China ²⁶² | case series; 2 hospitals; nr -
10. Feb;
individuals hospitalised with
COVID-19 diagnosis | 107; median 51
(36-65), nr (nr);
53% | PCR / no | in-hospital
mortality | Log / age, sex, comorbidities (HTN, CVD), laboratory values / na | ROBI
NSI=
6 | 2 estimates
Hypertension-Hospital mortality-OR-WPR-9-0 // Cardiovascular disease-Hospital mortality-OR-WPR-2-0 | | Wang, K;
China ²⁶³ | cohort; single-center; 7. Jan - 11. Feb; individuals hospitalised with COVID-19 diagnosis | 296; nr (nr), mean
55 (17); 54% | PCR / no | in-hospital
mortality | Log / clinical model: age, comorbidities (HTN, CHD), laboratory values / na | NOS
=7 | 2 estimates
Hypertension-Hospital mortality-OR-WPR-9-0 // Heart disease-Hospital mortality-OR-WPR-2-0 | | Wang, L;
China ²⁶⁴ | cohort; single-center; 1. Jan - 6. Feb; individuals hospitalised with COVID-19 diagnosis | 339; median 69
(75-76), nr (nr);
49% | PCR / no | in-hospital
mortality | Cox / model 1: age, comorbidities (CVD, CRB, COPD); model 2: age, complications / na | NOS
=8 | 3 estimates Cardiovascular disease-Hospital mortality-HR-WPR-7-0 // Cerebrovascular/Stroke-Hospital mortality-HR-WPR-4-0 // COPD-Hospital mortality-HR-WPR-3-0 | | Xie;
China ²⁶⁵ | cohort; single-center; 28.
Jan - 28. Feb;
individuals hospitalised with
COVID-19 diagnosis
(moderate to critical
COVID-19) | 140; median 60
(47-68), nr (nr);
51% | PCR / no | in-hospital
mortality | Cox / age, sex, comorbidities (HTN, any comorbidity), laboratory values, complications / age<60/female | other
=low-
mode
rate | 1 estimate
Hypertension-Hospital mortality-HR-WPR-8-20.3 | | Xu, J;
China ²⁶⁶ | cohort; multi-center, 3; 12.
Jan - 3. Feb;
ICU care patients with
COVID-19 diagnosis | 239; nr (nr), mean 62 (13); 60% | PCR / no | ICU
mortality | Cox / age, comorbidities (malignancy, liver dysfunction), laboratory values, complications / na | NOS
=7 | The outcome was excluded from the reporting | | Yan, Y;
China ²⁶⁷ | cohort; single-center; 10.
Jan - 24. Feb;
individuals hospitalised with
COVID-19 diagnosis | 193; median 64
(49-73), nr (nr);
59% | PCR / yes, some information on DM | in-hospital
mortality | Cox / model 1: age, sex, comorbidities (DM);
model 2: age, sex, comorbidities (DM, CVD,
CRB) / na | NOS
=8 | 2 estimates Hypertension-Hospital mortality-HR-WPR-8-20.3 // Diabetes-Hospital mortality-HR-WPR-10-17.5 | | Yang, Q;
China ²⁶⁸ | cohort; single-center; 1. Jan - 29. Feb; individuals hospitalised with COVID-19 diagnosis | 226; nr (nr), mean
50 (15); nr (nr),
mean 68 (16);
47%; 62% | PCR / no | in-hospital
mortality | Cox, Matching / model 1 (with matching design): sex, age, comorbidities (HTN), laboratory values; model 2 (with matching design) for critically ill patients: sex, age, comorbidities (HTN), laboratory values, Acute Physiology And Chronic Health Evaluation (APACHE) II score, duration of methylprednisolone use / na | other
=low | 1 estimate Hypertension-Hospital mortality-HR-WPR-8-20.3 | | Yu;
China ²⁶⁹ | cohort; single-center; 14.
Jan - 28. Feb;
individuals hospitalised with
COVID-19 diagnosis | 1464; median 64
(51-71), nr (nr);
50% | PCR / no | in-hospital
mortality | Log / model 1: age, sex, comorbidities (HTN, DM), laboratory values: model 2: age, sex, comorbidities (DM), laboratory values / age<65/female | NOS
=7 | 2 estimates
Hypertension-Hospital mortality-OR-WPR-9-0 // Diabetes-Hospital mortality-OR-WPR-4-84.8 | | Zhang, F;
China ²⁷⁰ | case-control; 2 hospitals; 7.
Feb - 27. Mar;
young individuals
hospitalised with COVID-19
diagnosis | 53 (cases: 13,
controls: 40); nr
(nr), nr (nr); nr | PCR / yes,
definition of
obesity provided | in-hospital
mortality | Log / BMI, laboratory values / na | NOS
=8 | Analysis of age-stratified estimates | | Study | Study design; setting,
number of hospitals;
period;
Study population | Sample size; age
(median (IQR),
mean (SD or CI)
or % in certain
age group(s)); %
of males | Given definition
of COVID-19/
pre-existing
condition (if yes,
see section 2.3
for detail) | Outcomes
relevant
for review | Adjustment method (Regression Model) /
Covariates / Reference age and sex category | Risk
of
bias | Analyses the study participated in [Main meta-analyses reported as: number of the resulted effect estimates the study contributed to; a meta-analysis is described as Condition-Outcome-Measure of association-Region-Total number of studies in the analysis-I ² %] | |--|---|---|---|---|---|------------------------|--| | Zhang, H;
China ²⁷¹ | cohort; multi-center, 5; 5.
Jan - 18. Mar;
individuals with cancer
diagnosed with COVID-19 | 107; median 66
(37-98), nr (nr);
56% | PCR and/or based
on radiologic
findings (%
unclear) / yes,
cancer defined as
receiving ongoing
active anticancer
treatment | case
mortality | Cox / age, receiving anticancer treatment / age
numeric/sex na | NOS =8 | Analysis of evidence for specific population groups – patients with cancer | | Zhang, P;
China ²⁷² | cohort; multi-center, 9; 31.
Dez - 20. Feb;
individuals with
hypertension hospitalised
with COVID-19 diagnosis | 1128; median 64
(57-69), nr (nr);
53% | PCR and/or based
on radiologic
findings (%
unclear)/ yes,
partially, for HTN | in-hospital
mortality | Cox, Matching / model 1: age, sex, comorbidities (coronary heart disease, CRB), inhospital medication, use of ACEI/ARB; model 2 match: age, sex, in-hospital medication, laboratory values (DM, coronary heart disease, CRB, chronic renal disease), medications / na | NOS
=>8 | 1 estimate Hypertension-Hospital mortality-HR-WPR-8-20.3 | | Zhang, X;
China ²⁷³
pre-print | cohort; single-center; 2. Feb - 25. Mar; 23. Feb - 24. Mar; 21. Feb - 25. Mar; 11. Feb - 21. Mar; 8. Feb - 15. Mar; critically ill patients diagnosed with COVID-19 admitted to ICU | 282; median 69
(60-78), nr (nr);
55% | PCR / no | hospitalisa
tion, in-
hospital
mortality | Log / model inhospital mortality: COPD, AKI stage, SOFA score / na | QUIP
S=mo
derate | 1 estimate COPD-Hospital mortality-OR-WPR-4-0 | | Zhang, Y;
China ²⁷⁴ | cohort; single-center; 29.
Jan - 12. Feb;
individuals with COVID-19
diagnosis hospitalised | 258; median 64
(23-91), nr (nr);
53% | PCR / no | case
mortality | Cox / age, comorbidities (DM, CVD, CKD), laboratory values / na | NOS
=8 | 1 estimate Diabetes-Hospital mortality-HR-WPR-10-17.5 | | Zhao;
China ²⁷⁵ | cohort; single-center; 1. Jan
- 14. Feb;
individuals hospitalised with
COVID-19 diagnosis | 1000; median 61
(46-70), nr (nr);
47% | PCR or viral sequencing/ no | in-hospital
mortality | Cox / age (3 groups: <60, 60 <age<75, <75);<br="">comorbidities (HTN, DM, CHD, COPD, CVD,
chronic renal disease, chronic liver disease,
malignancy) / age<60/na</age<75,> | NOS
=7 | 8 estimates Coronary artery disease-Hospital mortality-HR-WPR-3-63.7 // Cardiovascular disease-Hospital mortality-HR-WPR-7-0 // Hypertension-Hospital mortality-HR-WPR-8-20.3 // Diabetes-Hospital mortality-HR-WPR-10-17.5 // Chronic kidney disease-Hospital mortality-HR-WPR-3-92.4 // Cancer-Hospital mortality-HR-WPR-4-8.9 // COPD-Hospital mortality- HR-WPR-3-0 // Chronic liver disease-Hospital mortality-HR-WPR-1-0 | | Zhou;
China ²⁷⁶ | cohort; 2 hospitals; 29. Dec - 31. Jan; individuals hospitalised with COVID-19 diagnosis | 171; median 56
(46-67), nr (nr);
62% | PCR / no | in-hospital
mortality | Log / age, comorbidities (CHD), SOFA score, laboratory values / age na/male | NOS
=7 | 1 estimate
Coronary artery disease-Hospital mortality-OR-WPR-2-0 | | Zhu;
China ²⁷⁷ | cohort; multi-center, 19; 30.
Dez - 20. Mar;
individuals hospitalised with
COVID-19 diagnosis | 7337 (952
diabetic, 6385
non-diabetic);
diabetic: median
62 (55-68), nr (nr);
non-diabetic:
median 53 (40-
63); nr (nr); 54%
group with DM;
47% without DM | PCR or viral
sequencing/ yes,
definition of
types of DM
provided | in-hospital
mortality | Cox / age, sex, comorbidities (DM), hospital site; model 2: age, sex, comorbidities (DM), hospital site, severity of COVID-19 / na | NOS
=8 | 1 estimates
Diabetes-Hospital mortality-HR-WPR-10-17.5 | | Internation
al | | | | | | | | | Study | Study design; setting,
number of hospitals;
period;
Study population | Sample size; age
(median (IQR),
mean (SD or CI)
or % in certain
age group(s)); %
of males | Given definition
of COVID-19/
pre-existing
condition (if yes,
see section 2.3
for detail) | Outcomes
relevant
for review | Adjustment method (Regression Model) /
Covariates / Reference age and sex category | Risk
of
bias | Analyses the study participated in [Main meta-analyses reported as: number of the resulted effect estimates the study contributed to; a meta-analysis is described as Condition-Outcome-Measure of association-Region-Total number of studies in the analysis-I ² %] | |---|--|--|--|------------------------------------|---|--------------------|---| | Garassino;
Global
(Europe,
USA,
China) ²⁷⁸ | cohort; multi-center, 87; 26.
Mar - 12. Apr;
patients with thoracic
malignancies diagnosed
with COVID-19, identified
from registry | 200; median 68
(62 -75), nr (nr);
70% | PCR (90%)
/diagnosis based
on radiologic
findings (7%) /
clinical diagnosis
(3%) / no | case
mortality | Log / age, sex, comorbidities (HTN, COPD), smoking / age <65 / male | NOS
=6 | Analysis of evidence for specific population groups – patients with cancer | | Kuderer;
Internation
al ²⁷⁹ | cohort; electronic database;
17. Mar - 16. Apr;
individuals with cancer
hospitalised with COVID-19
diagnosis | 928; median 66
(57-76), nr (nr);
50% | PCR / no | in-hospital
mortality | Log / age, sex, race and ethnicity, region of patient residence, smoking, comorbidities (obesity, number of comorbidities 1->=4), type of malignancy, cancer status, Eastern Cooperative Oncology Group (ECOG) performance status, type of anticancer status, recent surgery, treatment of COVID-19 / age per 10 years/female | NOS
=8 | Analysis of evidence for specific population groups – patients with cancer | | Mato;
Internation
al ²⁸⁰ | cohort; multi-center, 43; 17.
Feb - 30. Apr;
patients with history of
chronic lymphocytic
leukemia hospitalised with
COVID-19 diagnosis | 198; median 63
(35-92), nr (nr);
63% | PCR / no | in-hospital
mortality | Cox / age, cumulative illness rating scale
(CIRS), comorbidities (DM, AST, Resp) / age
>=75/sex na | NOS
=6 | International studies were excluded from meta-analyses | ACEI, Angiotensin Converting Enzyme Inhibitor; AIDS, acquired immunodeficiency syndrome; ARBs, angiotensin receptor blocker; ART, arrhythmia or atrial fibrillation; AST, asthma; Auto, Autoimmune condition; BMI, body mass index; CAD, coronary artery disease; CANC, cancer -- not specified whether active or not, any cancer; CANCact, active cancer; CCI, Charlson Comorbidity Index; CHF, congestive heart failure; CKD, chronic kidney disease; CLD, chronic liver disease; COPD, chronic obstructive pulmonary disease; Cox, Cox proportional hazards model; CRB, cerebrovascular diseases or stroke; CVA/TIA, cerebrovascular accident/transient ischemic attack; CVD, cardiovascular disease; DEM, dementia; DM, diabetes mellitus; ECI, Elixhauser Comorbidity Index; eGFR, Estimated glomerular filtration rate; GLM, generalized linear model; HIV, human immunodeficiency virus; HTN, hypertension; IBD, inflammatory bowel disease; ILD, interstitial lung disease; Immun, immunodeficiency or immunosuppressed state; IQR, interquartile range; JBI, Joanna Briggs Institute Score; Log, logistic regression model; MINORS, methodological index for non-randomized studies tool; Myo, Myocardial infarction; Na, not available; NOS, Newcastle Ottawa Scale; Nr, not reported; Organ, organ transplant history; PVD, peripheral vascular disease; QUIPS, Quality In Prognosis Studies Tool; Resp, Pulmonary Disease or respiratory disease not defined; Rheuma, rheumatological disease; ROBINS, Risk Of Bias in Non-randomized Studies tool; ROBINSI, Risk Of Bias in Non-randomized Studies of Interventions tool; SES, socioeconomic status; SOFA, sequential organ failure assessment; UC, ulcerative colitis; VTE, venous thromboembolism; #### 2.2. Summary of the studies based on the general population Nine²⁸¹⁻²⁸⁹ studies which reported community-based estimates were excluded from the analysis due to incomparability. This section thus serves as a short presentation of the results of these nine studies (see Table 4 table). Six^{281,284-288} studies were conducted using a population from the UK Biobank, two^{282,289} studies were based on an English, and one study on a Spanish cohort²⁸³. The observation periods used in the studies ranged from February 01, 2020 to June 22, 2020. Two English studies enrolled general populations identified via "OpenSAFELY England"—a health analytics platform that provides primary data of 40% of the English population (https://opensafely.org/), and the Spanish study included individuals identified via a database containing the data from 60 hospitals in Spain. The sample sizes were large (at least N=269,070 up to over 17 million). The outcomes used that were of interest to our research question were hospitalisation (in 6/9 studies,) and case mortality (3/9). Other outcomes such as in-hospital mortality or ICU admission were used in 1/9 studies (see Table 4). Results are presented from multivariate models only, at least adjusting for sex and age. Increasing risks for hospitalisation were seen for the pre-existing conditions dementia²⁸¹, type 2 diabetes^{281,288}, COPD^{281,286}, pneumonia²⁸¹, depression²⁸¹, atrial fibrillation²⁸¹, hypertension^{281,286}, chronic kidney disease in women only²⁸¹ and in general²⁸⁸, asthma in women only²⁸¹, overweight and obesity^{284-286,288}. Lassale et al.²⁸⁷ found that "ever seen a psychiatrist", chronic bronchitis, CVD and hypertension were not associated with an increased risk of hospitalisation. In-hospital mortality was used as an outcome in the study of Atkins et al.²⁸¹, only. The authors showed that the pre-existing conditions dementia, type 2 diabetes, COPD, pneumonia and depression were associated with an increased risk of in-hospital mortality. In the study by Bhaskaran et al.²⁸², case mortality was associated with HIV. Del Amo et al.²⁸³ found that the risk standardised to the age and sex of the general population in Spain aged 20 to 79 years old for death among HIV-positive persons receiving antiretroviral therapy (ART) was 3.7 (CI 3.6-3.8). For comparison, in the Spanish general population aged 20 to 79 years during the same period the risk for death was 2.1 per 10,000. Other pre-existing conditions associated with an increased risk of case mortality were determined by Williamson et al.²⁸⁹: obesity with a BMI>40, diabetes, severe asthma (defined as asthma with recent use of an oral corticosteroid), respiratory disease, chronic heart disease, liver disease, stroke, dementia, other neurological diseases, reduced kidney function (greater hazard ratio associated with a lower estimated glomerular filtration rate; eGFR), autoimmune diseases (rheumatoid arthritis, lupus or psoriasis) and other immunosuppressive conditions, a recent (that is, in the last five years) history of haematological malignancy, other cancers, a history of dialysis or end-stage renal failure. Table 4 Overview of the studies which report community-based estimates (n=9) | Study | Study
design | Study
population | Sample size, age
(mean (SD or CI)
or median (IQR)),
% of males | Outcomes
relevant
for review | Adjust
ment | Covariates | Results | Conclusion | Risk
of
bias | |--|--|---|---|---|----------------|---|--|---|--------------------| | Atkins;
UK ²⁸¹ |
cohort;
electronic
database;
16. Mar -
26. Apr | community-
based
population (UK
Biobank) | 269070 (507
COVID-19
positive); COVID-
19 positive mean 74
(5); rest of cohort
mean 73 (4);
COVID-19 positive:
61%; rest of cohort:
45% | hospitalisat
ion, in-
hospital
mortality | Log | age group, sex, ethnicity, education, comorbidities (CHD, atrial fibrillation, CRB, HTN, DM, CKD, depression, DEM, AST, COPD, osteoporosis, osteoarthritis), previous disease/condition (delirium, pneumonia, falls/fragility, fractures) | dementia, type 2 diabetes, COPD, pneumonia, depression, atrial fibrillation and hypertension are independent risk factors for hospitalisation, the first five remaining statistically significant for related mortality. Chronic kidney disease and asthma were risk factors for hospitalisation in women, but not in men | specific pre-existing
comorbidities are
disproportionally common in
hospitalised COVID-19 older
adults | NOS
=8 | | Hamer,
Gale;
UK ²⁸⁴ | cohort;
electronic
database;
16. Mar -
26. Apr | community-
based
population (UK
Biobank) | 334329; mean 56
(8); 46% | hospitalisat
ion | Log | age, sex, comorbidities (underweight, overweight, obese I, obese II, DM, CVD, HTN), smoking, physical activity, alcohol abstainer, education, ethnicity | upward linear trend in likelihood of hospitalisation
with increasing BMI, evident in overweight,
obesity stage I and II compared to normal weight | higher likelihood of
hospitalisation with
increasing adiposity, even in
participants with modest
weight gain | NOS
=7 | | Hamer,
Kivimae
ki; UK ²⁸⁵ | cohort;
electronic
database;
16. Mar -
26. Apr | community-
based
population (UK
Biobank) | 387109; mean 56
(8); 45% | hospitalisat
ion | Log | total life score, individual behaviours
(smoking, physical activity, alcohol
consumption, BMI) adjusted for age,
sex, education, ethnicity, comorbidities
(DM, HTN, CVD) | risk ratios were raised for obesity in relation to COVID-19 hospitalisation | data suggest that adopting
simple lifestyle changes
could lower the risk of severe
COVID-19 infection and
COVID-19 hospitalisation | na | | Khawaja;
UK ²⁸⁶ | cohort;
electronic
database;
16. Mar -
16. Apr | community-
based
population (UK
Biobank) | 406793 (605 cases,
406188 controls);
mean 68 (range 48-
85); 45% | hospitalisat
ion | Log | age, sex, ethnicity, education, townsend deprivation index, comorbidities (HTN, IHD, CRB, COPD), BMI (3 groups), alcohol consumption, smoking, laboratory values, medication | higher BMI, hypertension or COPD were major independent risk factors for hospitalisation with COVID-19 | Understanding why factors
increase risk of severe
COVID-19 may help
elucidate mechanisms and
inform strategy for disease
control | na | | Lassale;
UK ²⁸⁷ | cohort;
electronic
database;
16. Mar -
26. Apr | community-
based
population (UK
Biobank) | 340966; mean 56;
not hospitalised
45%; hospitalised
56% | hospitalisat
ion | Log | ethnicity, age, sex, education, number in household, townsend score, physical activity, alcohol, smoking, BMI, waist-to-hip-ratio, comorbidities (HTN; CVD, chronic bronchitis, ever seen a psychiatrist), laboratory values | pre-existing conditions adjusted for in the multivariate model "hospitalisation" were not found to be significantly associated with the outcome; in the age and sex adjusted model the authors found differences in risk depending on ethnicity, with black, Asian individuals and individuals categorised as having another ethnicity as compared to white, being under an increased risk of hospitalisation. | the authors found clear ethnic differences in the risk of COVID-19 hospitalisation which may have implications for health policy including the provision of prevention advice and targeted vaccination coverage | na | | Study | Study
design | Study
population | Sample size, age
(mean (SD or CI)
or median (IQR)),
% of males | Outcomes
relevant
for review | Adjust
ment | Covariates | Results | Conclusion | Risk
of
bias | |--|--|--|--|--|-------------------------------|--|--|--|--------------------| | Patel;
UK ²⁸⁸ | cohort;
electronic
database;
16. Mar -
14. Apr | community-
based
population (UK
Biobank) | 418794 (549
COVID-19 positive,
418245 without
test); mean 65; 45% | hospitalisat
ion | Log | age, sex, ethnicity, region, comorbidities (CAD, HTN, DM, heart failure, ischemic stroke, COPD, previous pneumonia, DEM (or Alzheimer), CKD), BMI, smoking, statin usage, alcohol consumption, tonwsend index, average income | race and socioeconomic deprivation were associated with an increased risk of hospitalisation. Increased risk of hospitalisation was suggested by the fully adjusted model for the following preexisting conditions: diabetes mellitus, BMI, chronic kidney disease | higher morbidity in non-
white individuals in the
context of a large population | na | | Bhaskara
n;
England ² | cohort;
electronic
database; 1.
Feb - 22.
Jun | community-
based
population
(OpenSAFELY
England) | with HIV: 27480,
without HIV
17225425; median
with HIV: 48 (40-
55), median without
HIV 49 (34-64);
HIV group: 65%; no
HIV group: 50% | case
mortality | Cox | model death: HIV versus no HIV adjusted for 1) age, sex; 2) in addition to model 1 index of multiple derivation, ethnicity, 3) model 2 in addition all covariates (HTN, chronic respiratory disease, asthma, chronic cardiac disease, diabetes, non-haematological cancer, haematological cancer, chronic liver disease, stroke/dementia, other neurological disease, reduced kidney function, organ transplant, asplenia, rheumatoid arthritis/lupus/psoriasis, other immunosuppressive conditions); hospitalisation: ; | people with HIV (as opposed to without) have a higher risk (nearly 3-fold) of COVID-19 death adjusting for age and sex (HR=2.90, 95% CI 1.96-4.30), this attenuated slightly after adjusting for additional variables such as multiple deprivation and ethnicity (HR=2.52, 1.70-3.73), then obesity, smoking, comorbidities (HR=2.30, 1.55-3.41). The authors also found that the association between HIV and death was larger in the group of black individuals compared with other ethnic groups (HR=3.80, 2.15-6.74 vs. 1.64, 0.92-2.90) | people with HIV might be a
high-risk group for COVID-
19 death, indicating a need to
consider targeted policies for
this group. | JBIC
=11 | | Del
Amo;
Spain ²⁸³ | cohort;
multicenter,
60; 1. Feb -
15. Apr | individuals with
HIV receiving
antiretroviral
therapy | 77590; 56%>=50
years; 75% | hospitalisat
ion, ICU
admission,
and death
(case
mortality) | Poisso
n
regress
ion | standardized to age and sex of the general population of Spain, estimates for HIV vs. no HIV for the outcomes COVID-19 hospital admission, COVID-19 ICU admission, COVID-19 death (case mortality) are presented | the risk standardized to the age and sex of the general population in Spain aged 20 to 79 years old for hospitalisation, ICU admission and death among HIV-positive persons receiving ART was 17.8 (CI 17.7-18.0), 2.5 (CI 2.4-2.6) and 3.7 (CI 3.6-3.8) respectively. For comparison, in the Spanish general population aged 20 to 79 years during the same period, the risk for COVID-19 diagnosis was 41.7 per 10 000 (33.0 per 10 000 after health care workers were excluded) and the risk for death was 2.1 per 10 000. The risk of hospitalisation was greater in men and person older than 70 years. There were no other pre-existing comorbidities included in the model. | The risk of adverse events (hospitalization, ICU admission, and death) among HIV-positive individuals treated with ART in Spain was increased in men and those older than 70 years (note: focus in article was different). | JBIC
=7 | | Study | Study
design | Study
population | Sample size, age
(mean (SD or CI)
or median (IQR)),
% of males | Outcomes
relevant
for review |
Adjust
ment | Covariates | Results | Conclusion | Risk
of
bias | |---|---|--|--|------------------------------------|----------------|--|---|---|--------------------| | Williams
on;
England ² | cohort;
electronic
database; 1.
Feb - 25.
Apr | community-
based
population
(OpenSAFELY
England) | 17278392; 6 groups:
18-39, 40-49, 50-59,
60-69, 70-79, 80+;
49%>=50 years;
50% | case
mortality | Cox | age, sex, ethnicity, comorbidities (obesity (3 groups), DM, CANC, haematological malignancy, reduced kidney function, AST, chronic Resp, chronic cardiac disease, HTN, chronic liver disease, stroke or DEM, asplenia, Organ transplant, Rheuma, Immun, other neurological disease), smoking, IMD quintile | increasing risk for COVID-19 death associated with obesity (BMI of over 40), diabetes, severe asthma, respiratory disease, chronic heart disease, liver disease, stroke, dementia, other neurological diseases, chronic heart diseases, reduced kidney function, autoimmune diseases and other immunosuppressive condition, 2.5 fold increased risk with history of haematological malignancy; with hypertension higher risk of mortality up to the age of 70 years | early insights into factors
associated with COVID-19
related deaths using detailed
primary care records of 17
million patients; based on
results suggest targeted use
of additional protection
measures for people in the
identified groups | JBIC
= 95
% | ## 2.3. Definitions of pre-existing conditions The pre-existing conditions were extracted as reported in the primary studies. For meta-analyses, the estimates for similar definitions were pooled. The following grouping was performed: | Pre-existing condition | Conditions (indications) extracted from the primary studies which falling in the category | | | |---|---|--|--| | Circulatory diseases | | | | | Arrhythmia | arrhythmia, atrial fibrillation | | | | Cardiovascular disease | cardiovascular disease, vascular disease (not further defined) | | | | Coronary artery disease | coronary artery disease, ischemic heart disease, coronary heart disease | | | | Heart disease | heart disease (not further defined) | | | | Heart failure | chronic heart failure, heart failure, congestive heart failure | | | | Hypertension | hypertension | | | | Infarction | myocardial infarction, infarction | | | | Peripheral vascular disease | peripheral vascular disease | | | | Venous thromboembolism | venous thromboembolism, DVT/PE | | | | Immunodeficiency | | | | | Autoimmune condition | autoimmune condition | | | | HIV | HIV, HIV/AIDS | | | | Inflammatory bowel disease | inflammatory bowel disease | | | | Immunosuppression | immunodeficiency, immunosuppressed state | | | | Organ transplant recipients | organ transplant recipients, organ transplant history | | | | Rheumatological disease | rheumatological disease | | | | Liver & Metabolic diseases | <u>. </u> | | | | Chronic kidney disease | chronic kidney disease, renal disease, reduced renal function, renal failure, CKD>3, moderate/severe renal disease, kidney diseases, chronic renal disease, | | | | Chronic liver disease | chronic liver disease, liver disease, mild liver disease, moderate/severe liver disease | | | | Chronic liver
disease/Cirrhosis | cirrhotic liver disease, liver cirrhosis | | | | Chronic liver disease /Non-cirrhotic | non-cirrhotic liver disease | | | | Diabetes | diabetes | | | | Dyslipidemia or | hyperlipidemia, hypercholesterolemia, hyperlipidaemia, pure hypercholesterolemia, | | | | hyperlipidemia | dyslipidemia | | | | Hepatitis | viral hepatitis, hepatitis | | | | Neurological diseases & Men | | | | | Cerebrovascular or Stroke | stroke, cerebrovascular diseases, cerebral infarction, cerebrovascular accident/transient ischemic attack | | | | Dementia | dementia, Alzheimer disease | | | | Depression | depression | | | | Neurological disease | neurological disease, chronic neurological disorder | | | | Psychiatric disorder | major psychiatric disorder, schizophrenia | | | | Oncological diseases | · · · · · · · · · · · · · · · · · · · | | | | Cancer | malignant neoplasm, malignancy, tumor, cancer any, history of cancer | | | | Cancer/Active | cancer active, active malignancy | | | | Cancer/ Hematological | haematological malignancy, lymphoid, myeloid | | | | Cancer/Solid | solid tumor, solid malignancy | | | | Overweight, obesity, underwe | eight | | | | Obesity/BMI≥30 | BMI≥30, obesity, BMI30-40vs<18.5-25, BMI30-35vs<25, BMI≥30vs<18.5-25, BMI30-40vs<30, BMI35-39vs18.5-24, BMI30-34.9vs18.5-24.9, BMI≥30vs<27, BMI≥35vs<30 | | | | Obesity/BMI≥40 | BMI≥40, BMI≥40vs<25, BMI≥40vs<18.5-25, BMI≥40vs<30, severe obesity (BMI>=40 vs BMI<40), BMI40-44vs18.5-24 | | | | Overweight | BMI25-30vs<25, BMI25-30vs<18.5-25, BMI25-29.9vs<25, BMI27-29.9vs<27, Overweight | | | | | BMI<18.5vs18.5-24, BMI<18.5vs18.5-25, BMI<18.5vs18.5-35, BMI<25vs25-34, | | | | Underweight | BMI<18.5vs18.5-35, underweight | | | | Respiratory diseases | | | | | Asthma | asthma | | | | COPD | COPD | | | | COPD or Asthma | COPD or asthma | | | | Interstitial lung disease | interstitial lung disease | | | | Obstructive sleep apnea obstructive sleep apnea | | | | | Respiratory disease | pulmonary disease, respiratory disease, lung disease, chronic lung disorder (not further defined) | | | | Tuberculosis | tuberculosis, previous tuberculosis, current tuberculosis | | | | | | | | - Obesity: normal weight (BMI of 18.5-24.9 kg/m2), overweight (BMI of 25.0-29.9 kg/m2) and obese (BMI ≥30 kg/m2). The subjects with obesity were further stratified into classes: class I obesity was defined as a BMI of 30-34.9 kg/m2; class II obesity, by a BMI of 35-39.9 kg/m2; and morbid obesity, by a BMI ≥40 kg/m2.6 - Hypertension: as systolic blood pressure of ≥130 mmHg or diastolic blood pressure of ≥85 mmHg.7 Diabetes: a fasting blood glucose level of ≥126 mg/dL #### Argenziano et al. USA 170 - Pulmonary disease: documentation of any pulmonary disease in the patient's chart as past medical history including, but not limited to asthma, Chronic Obstructive Pulmonary Disease (COPD), obstructive sleep apnea (OSA), or interstitial lung disease (ILD). - Renal disease: documentation of chronic kidney disease (CKD) or end stage renal disease (ESRD) in the patient's chart as past medical history. - Rheumatological disease: documentation of any autoimmune disease in the patient's chart as past medical history including, but not limited to rheumatoid arthritis or systemic lupus erythematosus (SLE), scleroderma, sarcoidosis. ## Berenguer et al. Spain 127 - Cancer: the presence of an active solid or haematologic malignant neoplasm. - Obesity: as a body mass index of >30 kg/m2. ## Bezzio et al. Italy 128 • IBD: clinical activity defined as a partial Mayo score ≥3 with a rectal bleeding subscore ≥1 for UC,14 15 and a Harvey- Bradshaw Index for CD ≥516 #### Bianchetti et al. Italy ¹²⁹ • Dementia: diagnosed according to clinical history and results of the cognitive assessment #### Burn et al. Spain ¹³¹ - Autoimmune condition: type 1 diabetes, rheumatoid arthritis, psoriasis, psoriatic arthritis, multiple sclerosis, systemic lupus erythematosus, Addison's disease, Grave's disease, Sjorgen's syndrome, Hashimoto thyroiditis, Myasthenia gravis, vasculitis, pernicious anemia, celiac disease, scleroderma, sarcoidosis, ulcerative colitis, and Crohn's disease - Obesity: either by a diagnosis code, a record of a body mass index measurement between 30 and 60 kg/m2, or a recorded weight between 120 and 200 kg within 5 years of the index date ## Busetto et al. Italy 132 • Weight: normal weight (BMI < 25 kg/m2), overweight (BMI from 25 to < 30 kg/m2), and obesity (BMI \geq 30 kg/m2) ## Chhiba et al. USA 172 | ICD-10 code | Code diagnosis | |-------------------------------------|---| | 496, 491.xx, 492.xx, any J44.x | Chronic obstructive pulmonary disease | | 327.23, G47.33 | Obstructive sleep apnea | | 472, J31.0 | Nonallergic rhinitis | | 297.06, D83.9, 279.xx, D80.6, D80.3 | Common variable immunodeficiency, antibody deficiency, IgA deficiency | | 250, E11.9 | Diabetes mellitus | | 414.01, 125.10 | Coronary artery disease | | 401.9, R03.0 | Hypertension | ### D'Silva et al. USA 177 Pulmonary disease included interstitial lung disease, asthma, chronic obstructive pulmonary disease or obstructive sleep apnoea. • Rheumatic disease terms used to identify patients with systemic rheumatic disease and their
associated ICD-9 and ICD-10 codes | Category | Rheumatic Disease (ICD codes) | |---------------------------------------|--| | Inflammatory arthritis | Rheumatoid arthritis (M05%, M06%, 714%) | | | Inflammatory arthritis or inflammatory polyarthropathy
(M06.4, 714.89, 714.9) | | | Juvenile idiopathic arthritis (M08.20, 714.3) | | | Psoriatic arthritis or arthropathic psoriasis (L40.50,
696.0) | | | • Ankylosing spondylitis (M45.9, 720.0) | | Vasculitis | ANCA-associated vasculitis: granulomatosis with polyangiitis, eosinophilic granulomatosis with polyangiitis, microscopic polyangiitis (M31.3, M31.7, M30.0, 446.0, 446.4, 446.7, 447.6) Kawasaki disease (M30.3, 446.1) Takayasu arteritis (M31.4, 446.7) Polyarteritis nodosa (M30.0, 446.0) Giant cell arteritis/polymyalgia rheumatica (M31.6, 446.5, M35.3, 725%) Behçet disease (M35.2, 136.1) Unspecified arteritis (I77.6, 447.6) | | Other Systemic
Autoimmune Diseases | Systemic lupus erythematosus (M32%, 710.0) Sjogren's syndrome (M35.0, 710.2) Idiopathic inflammatory myositis: dermatomyositis, polymyositis, statin-associated autoimmune myositis, unspecified myositis (G72.49, G72.41, M33, 710.3, 710.4) Systemic sclerosis (M34.0, M34.1, M34.8%, M34.9, 710.1) Mixed connective tissue disease (M35.1, 710.9) Antiphospholipid syndrome (D68.61, 239.81) Sarcoidosis (D86.0, D86.9, 135%) IgG4-related disease (M35) | ### Di Castelnuovo et al. Italy ¹³⁹ • Chronic kidney disease was classified as: stage 1: normal or increased glomerular filtration rate (eGFR) (≥90 mL/min/1.73 m2); stage 2: kidney damage with mild reduction in eGFR (60-89 mL/min/1.73 m2); stage 3a: moderate reduction in eGFR (45-59 mL/min/1.73 m2); stage 3 b: moderate reduction in eGFR (30-44 mL/min/1.73 m2); stage 4: severe reduction in eGFR (15-29 mL/min/1.73 m2); stage 5: kidney failure (eGFR <15 mL/min/1.73 m2 or dialysis) # Docherty et al. UK 140 • Comorbidities: as per Charlson Comorbidities Index. Obesity - clinician defined ## Galloway et al. UK 141 • Chronic lung disease: predominantly asthma, COPD and interstitial lung disease ## Gu, T, Mack et al. USA 290 • Based on ICD- 9 | Disease | Code | |----------------------|--| | Respiratory Diseases | At least one of the following observed phecodes and their subcodes: 464, 465, 465.2, 465.4, 470, 471, 472, 473, 473.1, 473.3, 473.4, 474, 474.1, 474.2, 475, 475.9, 476, 477, 478, 479, 480, 480.1, 480.11, 480.12, 480.13, 480.2, 480.3, 480.5, 481, 483, 495, 495.1, 495.11, 495.2, 496, 496.1, 496.2, 496.21, 496.3, 497, 498, 499, 500, 500.1, 500.2, 501, 502, 503, 504, 504.1, 505, 506, 507, 508, 509, 509.1, 509.2, 509.3, 509.5, 509.8, 510, 510.2, 512, 512.1, 512.2, 512.3, 512.7, 512.8, 512.9, 513, 513.3, 513.31, 513.32, 513.4, 513.8, 514, 514.1, 514.2, 516, 516.1, 519, 519.1, 519.2, 519.8, 519.9 | | Circulatory Diseases | At least one of the following observed phecodes and their subcodes: 394, 394.1, 394.2, 394.3, 394.4, 394.7, 395, 395.1, 395.2, 395.3, 395.4, 395.6, 396, 401, 401.1, 401.2, 401.21, 401.22, 401.3, 411.4, 411.1, 411.2, 411.3, 411.4, 411.8, 411.9, 414, 414.2, 415, 415.1, 415.11, 415.2, 415.21, 416, 418, 418.1, 420, 420.1, 420.2, 420.21, 420.22, 420.3, 425, 425.1, 425.11, 425.12, 425.2, 425.8, 426, 426.2, 426.21, 426.22, | | 426.23, 426.24, 426.25, 426.3, 426.31, 426.32, 426.4, 426.7, 426.8, 426.9, 426.91, 426.92, 427, 427.1, 427.11, 427.12, 427.2, 427.21, 427.22, 427.32, 427.41, 427.42, 427.5, 427.6, 427.61, 427.7, 427.8, 427.9, 428, 428.1, 428.2, 428.3, 428.4, 429, 429.1, 429.2, 429.9, 430, 430.1, 430.2, 430.3, 433, 433.1, 433.12, 433.12, 433.2, 433.21, 433.31, 433.32, 433.5, 433.6, 433.8, 440, 440.1, 440.2, 440.21, 440.22, 440.9, 441, 441.1, 441.2, 442, 442.11, 442.2, 442.3, 442.4, 442.8, 443, 443.1, 443.7, 443.8, 443.9, 444, 444.1, 444.2, 444.5, 446, 446.1, 446.2, 446.3, 446.4, 446.5, 446.6, 446.7, 446.8, 446.9, 447, 447.1, 447.7, 448, 450, 451.2, 452.4, 452.1, 452.2, 452.8, 453, 454.1, 454.11, 455, 456, 457, 457.2, 457.3, 458, 458.1, 458.2, 458.9, 459, 459.1, 459.7, 459.9 Any Cancer At least one of the following observed phecodes and their subcodes: 145, 145.2, 145.3, 145.4, 149, 149.1, 149.2, 149.3, 149.4, 149.5, 149.9, 150, 151, 153, 153.2, 153.3, 155, 155.1, 157, 158, 159, 159.2, 159.3, 159.4, 164, 165, 165.1, 170, 170.1, 170.2, 172, 172.11, 172.2, 172.22, 172.22, 172.3, 174, 174.1, 174.11, 175, 180, 180.1, 180.3, 182, 184, 184.1, 184.11, 184.2, 185, 187, 187.1, 187.2, 189, 189.1, 189.12, 189.2, 189.2, 189.4, 190, 191, 191.1, 191.11, 193, 194, 195, 195.1, 195.3, 196, 197, 198, 198.1, 198.2, 198.3, 198.4, 198.5, 198.6, 198.7, 199.4, 200, 200.1, 201, 202, 202.2, 202.21, 202.22, 202.23, 202.24, 204, 204.1, 204.11, 204.12, 204.2, 204.21, 204.22, 204.3, 204.4, 209 Type 2 Diabetes At least one of the following observed phecodes and their subcodes: 585 Liver Diseases At least one of the following observed phecodes and their subcodes: 571 Autoimmune Diseases At least one of the following observed phecodes and their subcodes: 242.1, 250.1, 335, 557.1, 694.1, 695.4, 696.4, 697, 704.1, 714.1, 717 | | 10.00 10.01 10.07 10.0 10.01 10.00 10.1 10.5 10.0 10.0 10 | |---|---------------------|--| | 427.9, 428, 428.1, 428.2, 428.3, 428.4, 429.1, 129.2, 429.3, 429.9, 430, 430.1, 430.2, 430.3, 433.433.1, 433.11, 433.12, 433.2, 433.21, 433.31, 433.32, 433.5, 433.6, 433.8, 440, 440.1, 440.2, 440.21, 440.22, 440.9, 441, 441.1, 441.2, 442.1, 442.11, 442.1, 442.3, 442.4, 442.8, 443, 443.1, 443.7, 443.8, 443.9, 444, 444.1, 444.2, 444.5, 446.4, 446.2, 446.3, 446.4, 446.5, 446.6, 446.7, 446.8, 446.9, 447, 447.1, 447.7, 448, 450, 451, 451.2, 452.4, 452.1, 452.2, 452.8, 453, 454, 454.1, 454.11, 455, 456, 457, 457.2, 457.3, 458, 458.1, 458.2, 458.9, 459, 459.1, 459.7, 459.9 Any Cancer At least one of the following observed phecodes and their subcodes: 145, 145.2, 145.3, 145.4, 149, 149.1, 149.2, 149.3, 149.4, 149.5, 149.9, 150, 151, 153, 153.2, 153.3, 155.1, 157, 158, 159, 159.2, 159.3, 159.4, 164, 165, 165.1, 170, 170.1, 170.2, 172.17, 172.11, 172.2, 172.21, 172.22, 172.3, 174, 174.1, 174.11, 175, 180, 180.1, 180.3, 182, 184, 184.1, 184.11, 184.2, 185, 187, 187.1, 187.2, 189, 189.11, 189.12, 189.2, 189.2, 189.4, 190, 191, 191.1, 191.11, 193, 194, 195, 195.1, 195.3, 196, 197, 198, 198.1, 198.2, 198.3, 198.4, 198.5, 198.6, 198.7, 199.4, 200, 200.1, 201, 202, 202.2, 202.21, 202.22, 202.23, 202.24, 204, 204.1, 204.12, 204.2, 204.21, 204.22, 204.3, 204.4, 209 Type 2 Diabetes At least one of the following observed phecodes and their subcodes: 585 Liver Diseases At least one of the following observed phecodes and their subcodes: 571 Autoimmune Diseases At least one of the following observed phecodes and their subcodes: 242.1, 250.1, 335, 557.1, 694.1, 695.4, |
 426.23, 426.24, 426.25, 426.3, 426.31, 426.32, 426.4, 426.7, 426.8, 426.9, 426.91, 426.92, 427, 427.1, | | 433.11, 433.12, 433.2, 433.21, 433.3, 433.31, 433.32, 433.5, 433.8, 440, 440.1, 440.2, 440.21, 440.22, 440.9, 441, 441.1, 441.2, 442, 442.1, 442.11, 442.2, 442.3, 442.4, 442.8, 443, 443.1, 443.7, 443.8, 443.9, 444, 444.1, 444.2, 444.5, 446.1, 446.2, 446.3, 446.4, 446.5, 446.6, 446.7, 446.8, 446.9, 447, 447.1, 447.7, 448, 450, 451, 451.2, 452.4, 452.1, 452.2, 452.8, 453, 454, 454.1, 454.11, 455, 456, 457, 457.2, 457.3, 458, 458.1, 458.2, 458.9, 459, 459.1, 459.7, 459.9 Any Cancer At least one of the following observed phecodes and their subcodes: 145, 145.2, 145.3, 145.4, 149, 149.1, 149.2, 149.3, 149.4, 149.5, 149.9, 150, 151, 153, 153.2, 153.3, 155.1, 157, 158, 159, 159.2, 159.3, 159.4, 164, 165, 165.1, 170, 170.1, 170.2, 172.17, 172.11, 172.2, 172.22, 172.22, 172.3, 174, 174.1, 174.11, 175, 180, 180.1, 180.3, 182, 184, 184.1, 184.11, 184.2, 185, 187, 187.1, 187.2, 189, 189.1, 189.12, 189.2, 189.2, 189.4, 190, 191, 191.1, 191.11, 191.11, 193, 194, 195, 195.1, 195.3, 196, 197, 198, 198.1, 198.2, 198.3, 198.4, 198.5, 198.6, 198.7, 199.4, 200, 200.1, 201, 202, 202.22, 202.21, 202.22, 202.23, 202.24, 204, 204.1, 204.12, 204.2, 204.21, 204.22, 204.3, 204.4, 209 Type 2 Diabetes At least one of the following observed phecodes and their subcodes: 585 Liver Diseases At least one of the following observed phecodes and their subcodes: 571 Autoimmune Diseases At least one of the following observed phecodes and their subcodes: 242.1, 250.1, 335, 557.1, 694.1, 695.4, | | 427.11, 427.12, 427.2, 427.21, 427.22, 427.3, 427.4, 427.41, 427.42, 427.5, 427.6, 427.61, 427.7, 427.8, | | 440.9, 441, 441.1, 441.2, 442, 442.1, 442.11, 442.2, 442.3, 442.4, 442.8, 443, 443.1, 443.7, 443.8, 443.9, 444, 444.1, 444.2, 444.5, 446.1, 446.2, 446.3, 446.4, 446.5, 446.6, 446.7, 446.8, 446.9, 447, 447.1, 447.7, 448, 450, 451, 451.2, 452.4, 452.1, 452.2, 452.8, 453, 454.1, 454.11, 455, 456, 457, 457.2, 457.3, 458, 458.1, 458.2, 458.9, 459, 459.1, 459.7, 459.9 Any Cancer At least one of the following observed phecodes and their subcodes: 145, 145.2, 145.3, 145.4, 149, 149.1, 149.2, 149.3, 149.4, 149.5, 149.9, 150, 151, 153, 153.2, 153.3, 155.1, 157, 158, 159, 159.2, 159.3, 159.4, 164, 165, 165.1, 170, 170.1, 170.2, 172.1, 172.1, 172.2, 172.21, 172.22, 172.3, 174, 174.1, 175, 180, 180.1, 180.3, 182, 184, 184.1, 184.11, 184.2, 185, 187, 187.1, 187.2, 189, 189.1, 189.12, 189.2, 189.21, 189.4, 190, 191, 191.1, 191.11, 193, 194, 195, 195.1, 195.3, 196, 197, 198, 198.1, 198.2, 198.3, 198.4, 198.5, 198.6, 198.7, 199.4, 200, 200.1, 201, 202, 202.2, 202.21, 202.22, 202.23, 202.24, 204, 204.1, 204.11, 204.12, 204.2, 204.21, 204.22, 204.3, 204.4, 209 Type 2 Diabetes At least one of the following observed phecodes and their subcodes: 250.2 Kidney Diseases At least one of the following observed phecodes and their subcodes: 571 Autoimmune Diseases At least one of the following observed phecodes and their subcodes: 242.1, 250.1, 335, 557.1, 694.1, 695.4, | | 427.9, 428, 428.1, 428.2, 428.3, 428.4, 429, 429.1, 429.2, 429.3, 429.9, 430, 430.1, 430.2, 430.3, 433, 433.1, | | 444, 444.1, 444.2, 444.5, 446.1, 446.2, 446.3, 446.4, 446.5, 446.6, 446.7, 446.8, 446.9, 447, 447.1, 447.7, 448, 450, 451, 451.2, 452.4, 452.1, 452.2, 452.8, 453, 454.1, 454.11, 455, 456, 457, 457.2, 457.3, 458, 458.1, 458.2, 458.9, 459, 459.1, 459.7, 459.9 Any Cancer At least one of the following observed phecodes and their subcodes: 145, 145.2, 145.3, 145.4, 149, 149.1, 149.2, 149.3, 149.4, 149.5, 149.9, 150, 151, 153, 153.2, 153.3, 155, 155.1, 157, 158, 159, 159.2, 159.3, 159.4, 164, 165, 165.1, 170, 170.1, 170.2, 172.1, 172.1, 172.2, 172.21, 172.22, 172.21, 172.22, 172.3, 174, 174.1, 175, 180, 180.1, 180.3, 182, 184, 184.1, 184.1, 184.2, 185, 187, 187.1, 187.2, 189, 189.1, 189.12, 189.2, 189.2, 189.4, 190, 191, 191.1, 191.11, 193, 194, 195, 195.1, 195.3, 196, 197, 198, 198.1, 198.2, 198.3, 198.4, 198.5, 198.6, 198.7, 199.4, 200, 200.1, 201, 202, 202.2, 202.21, 202.22, 202.23, 202.24, 204, 204.1, 204.11, 204.12, 204.2, 204.21, 204.22, 204.3, 204.4, 209 Type 2 Diabetes At least one of the following observed phecodes and their subcodes: 250.2 Kidney Diseases At least one of the following observed phecodes and their subcodes: 571 Autoimmune Diseases At least one of the following observed phecodes and their subcodes: 242.1, 250.1, 335, 557.1, 694.1, 695.4, | | 433.11, 433.12, 433.2, 433.21, 433.3, 433.31, 433.32, 433.5, 433.6, 433.8, 440, 440.1, 440.2, 440.21, 440.22, | | 447.7, 448, 450, 451, 451.2, 452, 452.1, 452.2, 452.8, 453, 454, 454.1, 454.11, 455, 456, 457, 457.2, 457.3, 458, 458.1, 458.2, 458.9, 459, 459.1, 459.7, 459.9 Any Cancer At least one of the following observed phecodes and their subcodes: 145, 145.2, 145.3, 145.4, 149, 149.1, 149.2, 149.3, 149.4, 149.5, 149.9, 150, 151, 153, 153.2, 153.3, 155, 155.1, 157, 158, 159, 159.2, 159.3, 159.4, 164, 165, 165.1, 170, 170.1, 170.2, 172, 172.1, 172.2, 172.21, 172.22, 172.2, 172.2, 174.1, 174.11, 175, 180, 180.1, 180.3, 182, 184, 184.11, 184.2, 185, 187, 187.1, 187.2, 189, 189.11, 189.12, 189.2, 189.21, 189.4, 190, 191, 191.1, 191.11, 193, 194, 195, 195.1, 195.3, 196, 197, 198, 198.1, 198.2, 198.3, 198.4, 198.5, 198.6, 198.7, 199.4, 200, 200.1, 201, 202, 202.2, 202.21, 202.22, 202.23, 202.24, 204, 204.1, 204.11, 204.12, 204.2, 204.21, 204.22, 204.3, 204.4, 209 Type 2 Diabetes At least one of the following observed phecodes and their subcodes: 250.2 Kidney Diseases At least one of the following observed phecodes and their subcodes: 585 Liver Diseases At least one of the following observed phecodes and their subcodes: 571 Autoimmune Diseases At least one of the following observed phecodes and their subcodes: 242.1, 250.1, 335, 557.1, 694.1, 695.4, | | 440.9, 441, 441.1, 441.2, 442, 442.1, 442.11, 442.2, 442.3, 442.4, 442.8, 443, 443.1, 443.7, 443.8, 443.9, | | 458, 458.1, 458.2, 458.9, 459.1, 459.7, 459.9 Any Cancer At least one of the following observed phecodes and their subcodes: 145, 145.2, 145.3, 145.4, 149, 149.1, 149.2, 149.3, 149.4, 149.5, 149.9, 150, 151, 153, 153.2, 153.3, 155, 155.1, 157, 158, 159, 159.2, 159.3, 159.4, 164, 165, 165.1, 170, 170.1, 170.2, 172, 172.11, 172.2, 172.21, 172.22, 172.23, 174, 174.1, 174.11, 175, 180, 180.1, 180.3, 182, 184, 184.1, 184.11, 184.2, 185, 187, 187.1, 187.2, 189, 189.1, 189.12, 189.2, 189.21, 189.4, 190, 191, 191.1, 191.11, 193, 194, 195, 195.1, 195.3, 196, 197, 198, 198.1, 198.2, 198.3, 198.4, 198.5, 198.6, 198.7, 199.4, 200, 200.1, 201, 202, 202.2, 202.21, 202.22, 202.23, 202.24, 204, 204.1, 204.12, 204.2, 204.21, 204.22, 204.3, 204.4, 209 Type 2 Diabetes At least one of the following observed phecode and their subcodes: 250.2 Kidney Diseases At least one of the following observed phecodes and their subcodes: 571 Autoimmune Diseases At least one of the following observed phecodes and their subcodes: 242.1, 250.1, 335, 557.1, 694.1, 695.4, | | 444, 444.1, 444.2, 444.5, 446, 446.1, 446.2, 446.3, 446.4, 446.5, 446.6, 446.7, 446.8, 446.9, 447.1, | | Any Cancer At least one of the following observed phecodes and their subcodes: 145, 145.2, 145.3, 145.4, 149, 149.1, 149.2, 149.3, 149.4, 149.5, 149.9, 150, 151, 153, 153.2, 153.3, 155, 155.1, 157, 158, 159, 159.2, 159.3, 159.4, 164, 165, 165.1, 170, 170.1, 170.2, 172, 172.1, 172.11, 172.2, 172.21, 172.22, 172.3, 174, 174.1, 174.11, 175, 180, 180.1, 180.3, 182, 184, 184.1, 184.11, 184.2, 185, 187, 187.1, 187.2, 189, 189.1, 189.12, 189.2, 189.21, 189.4, 190, 191, 191.1, 191.11, 193, 194, 195, 195.1, 195.3, 196, 197, 198, 198.1, 198.2, 198.3, 198.4, 198.5, 198.6, 198.7, 199.4, 200, 200.1, 201, 202, 202.2, 202.21, 202.22, 202.23, 202.24, 204, 204.1, 204.12, 204.2, 204.21, 204.22, 204.3, 204.4, 209 Type 2 Diabetes At least one of the following observed phecode and their subcodes: 250.2 Kidney Diseases At least one of the following observed phecodes and their subcodes: 571 Autoimmune Diseases At least one of the following observed phecodes and their subcodes: 242.1, 250.1, 335, 557.1, 694.1, 695.4, | | 447.7, 448, 450, 451, 451.2, 452, 452.1, 452.2, 452.8, 453, 454, 454.1, 454.11, 455, 456, 457, 457.2, 457.3, | | 149.2, 149.3, 149.4, 149.5, 149.9, 150, 151, 153, 153.2, 153.3, 155, 155.1, 157, 158, 159, 159.2, 159.3, 159.4, 164, 165, 165.1, 170, 170.1, 170.2, 172, 172.1, 172.11, 172.2, 172.21, 172.22, 172.3, 174, 174.1, 174.11, 175, 180, 180.1, 180.3, 182, 184, 184.1, 184.11, 184.2, 185, 187, 187.1, 187.2, 189, 189.1, 189.12, 189.2, 189.21, 189.4, 190, 191, 191.1, 191.11, 193, 194, 195, 195.1, 195.3, 196, 197, 198, 198.1, 198.2, 198.3, 198.4, 198.5, 198.6, 198.7, 199.4, 200, 200.1, 201, 202, 202.2, 202.21, 202.22, 202.23, 202.24, 204, 204.1, 204.12, 204.2, 204.21, 204.22, 204.3, 204.4, 209 Type 2 Diabetes At least one of the following observed phecode and their subcodes: 250.2 Kidney Diseases At least one of the following observed phecodes and their subcodes: 571 Autoimmune Diseases At least one of the following observed phecodes and their subcodes: 242.1, 250.1, 335, 557.1, 694.1, 695.4, | | 458, 458.1, 458.2, 458.9, 459.1, 459.7, 459.9 | | 159.4, 164, 165, 165.1, 170, 170.1, 170.2, 172, 172.1, 172.21, 172.21, 172.22, 172.3, 174, 174.1, 174.11, 175, 180, 180.1, 180.3, 182, 184, 184.1, 184.11, 184.2, 185, 187, 187.1, 187.2, 189, 189.1, 189.11, 189.12, 189.2, 189.21, 189.4, 190, 191, 191.1, 191.11, 193, 194, 195, 195.1, 195.3, 196, 197, 198, 198.1, 198.2, 198.3, 198.4, 198.5, 198.6, 198.7, 199.4, 200, 200.1, 201, 202, 202.2, 202.21, 202.22, 202.23, 202.24, 204, 204.1, 204.12, 204.2, 204.21, 204.22, 204.3, 204.4, 209 Type 2 Diabetes At least one of the following observed phecode and their subcodes: 250.2 Kidney Diseases At least one of the following observed phecodes and their subcodes: 571 Autoimmune Diseases At least one of the following observed phecodes and their subcodes: 242.1, 250.1, 335, 557.1, 694.1, 695.4, | Any Cancer | At least one of the
following observed phecodes and their subcodes: 145, 145.2, 145.3, 145.4, 149, 149.1, | | 174.11, 175, 180, 180.1, 180.3, 182, 184, 184.1, 184.11, 184.2, 185, 187, 187.1, 187.2, 189, 180.1, 189.11, 189.12, 189.2, 189.21, 189.4, 190, 191, 191.11, 191.11, 193, 194, 195, 195.1, 195.3, 196, 197, 198, 198.1, 198.2, 198.3, 198.4, 198.5, 198.6, 198.7, 199.4, 200, 200.1, 201, 202, 202.2, 202.21, 202.22, 202.23, 202.24, 204, 204.1, 204.11, 204.12, 204.2, 204.21, 204.22, 204.3, 204.4, 209 Type 2 Diabetes At least one of the following observed phecodes and their subcodes: 250.2 Kidney Diseases At least one of the following observed phecodes and their subcodes: 571 Autoimmune Diseases At least one of the following observed phecodes and their subcodes: 242.1, 250.1, 335, 557.1, 694.1, 695.4, | | 149.2, 149.3, 149.4, 149.5, 149.9, 150, 151, 153, 153.2, 153.3, 155, 155.1, 157, 158, 159, 159.2, 159.3, | | 189.12, 189.2, 189.21, 189.4, 190, 191, 191.11, 193, 194, 195, 195.1, 195.3, 196, 197, 198, 198.1, 198.2, 198.3, 198.4, 198.5, 198.6, 198.7, 199.4, 200, 200.1, 201, 202, 202.2, 202.21, 202.22, 202.23, 202.24, 204, 204.1, 204.12, 204.2, 204.21, 204.22, 204.3, 204.4, 209 Type 2 Diabetes At least one of the following observed phecode and their subcodes: 250.2 Kidney Diseases At least one of the following observed phecodes and their subcodes: 585 Liver Diseases At least one of the following observed phecodes and their subcodes: 571 Autoimmune Diseases At least one of the following observed phecodes and their subcodes: 242.1, 250.1, 335, 557.1, 694.1, 695.4, | | 159.4, 164, 165, 165.1, 170, 170.1, 170.2, 172, 172.1, 172.11, 172.2, 172.21, 172.22, 172.3, 174, 174.1, | | 198.2, 198.3, 198.4, 198.5, 198.6, 198.7, 199.4, 200, 200.1, 201, 202, 202.2, 202.21, 202.22, 202.23, 202.24, 204, 204.1, 204.11, 204.12, 204.2, 204.21, 204.22, 204.3, 204.4, 209 Type 2 Diabetes At least one of the following observed phecode and their subcodes: 250.2 Kidney Diseases At least one of the following observed phecodes and their subcodes: 585 Liver Diseases At least one of the following observed phecodes and their subcodes: 571 Autoimmune Diseases At least one of the following observed phecodes and their subcodes: 242.1, 250.1, 335, 557.1, 694.1, 695.4, | | 174.11, 175, 180, 180.1, 180.3, 182, 184, 184.1, 184.11, 184.2, 185, 187, 187.1, 187.2, 189, 189.1, 189.11, | | 204, 204.1, 204.11, 204.12, 204.2, 204.21, 204.22, 204.3, 204.4, 209 Type 2 Diabetes At least one of the following observed phecode and their subcodes: 250.2 Kidney Diseases At least one of the following observed phecodes and their subcodes: 585 Liver Diseases At least one of the following observed phecodes and their subcodes: 571 Autoimmune Diseases At least one of the following observed phecodes and their subcodes: 242.1, 250.1, 335, 557.1, 694.1, 695.4, | | 189.12, 189.2, 189.21, 189.4, 190, 191, 191.1, 191.11, 193, 194, 195, 195.1, 195.3, 196, 197, 198, 198.1, | | Type 2 Diabetes At least one of the following observed phecode and their subcodes: 250.2 Kidney Diseases At least one of the following observed phecodes and their subcodes: 585 Liver Diseases At least one of the following observed phecodes and their subcodes: 571 Autoimmune Diseases At least one of the following observed phecodes and their subcodes: 242.1, 250.1, 335, 557.1, 694.1, 695.4, | | 198.2, 198.3, 198.4, 198.5, 198.6, 198.7, 199.4, 200, 200.1, 201, 202, 202.2, 202.21, 202.22, 202.23, 202.24, | | Kidney Diseases At least one of the following observed phecodes and their subcodes: 585 Liver Diseases At least one of the following observed phecodes and their subcodes: 571 Autoimmune Diseases At least one of the following observed phecodes and their subcodes: 242.1, 250.1, 335, 557.1, 694.1, 695.4, | | 204, 204.1, 204.11, 204.12, 204.2, 204.21, 204.22, 204.3, 204.4, 209 | | Liver Diseases At least one of the following observed phecodes and their subcodes: 571 Autoimmune Diseases At least one of the following observed phecodes and their subcodes: 242.1, 250.1, 335, 557.1, 694.1, 695.4, | Type 2 Diabetes | At least one of the following observed phecode and their subcodes: 250.2 | | Autoimmune Diseases At least one of the following observed phecodes and their subcodes: 242.1, 250.1, 335, 557.1, 694.1, 695.4, | Kidney Diseases | At least one of the following observed phecodes and their subcodes: 585 | | | Liver Diseases | At least one of the following observed phecodes and their subcodes: 571 | | 696.4, 697, 704.1, 714.1, 717 | Autoimmune Diseases | At least one of the following observed phecodes and their subcodes: 242.1, 250.1, 335, 557.1, 694.1, 695.4, | | | | 696.4, 697, 704.1, 714.1, 717 | # Gupta et al. USA $^{\rm 182}$ | Conditions | Definition | |---------------------------------------|--| | Asthma | Per chart review | | Atrial fibrillation/flutter | Per chart review | | Bone marrow transplant | Per chart review | | Cancer | Per chart review; active malignancy (other than non-melanoma skin cancer) treated in the past year. Defined as cancer of the lung, breast, colorectal, prostate, gastric, pancreatic, melanoma, ovarian, brain, or other | | Chronic kidney disease | Baseline eGFR< 60 on at least two consecutive values at least 12 weeks apart prior to hospital admission. If not available, defined as per chart review | | Chronic liver disease | Cirrhosis, alcohol-related liver disease, nonalcoholic fatty liver disease, autoimmune hepatitis, hepatitis B or hepatitis C, primary biliary cirrhosis, or other | | Chronic obstructive pulmonary disease | Per chart review | | Congestive heart failure | Per chart review; heart failure with preserved versus reduced ejection fraction | | Coronary artery disease | Per chart review; any history of angina, myocardial infarction, or coronary artery bypass graft surgery | | Diabetes mellitus | Per chart review; insulin versus non-insulin dependent | | End-stage kidney disease | Per chart review; on hemodialysis or peritoneal dialysis | | HIV/AIDS | Per chart review | | Hypertension | Per chart review | | Solid organ transplant | Per chart review (kidney, liver, heart, lung, other) | ## Halasz et al. Italy ¹⁴⁶ • Weight: underweight (under 18.5 kg/m2); normal weight (18.5–25 kg/m2); overweight (25–30 kg/m2); obese class I (30–35 kg/m2); obese class II (35–40 kg/m2) and obese class III (>40 kg/m2) # Harmouch et al. USA $^{\rm 183}$ Only the conditions reported in the multivariate regression model are extracted. | Category Description | ICD-10-CM Codes | |---------------------------------|---| | Vascular Disease | E08.51, E08.52, E09.51, E09.52, E10.51, E10.52, E11.51, E11.52, E13.51, E13.52, I70.0, | | | 170.1, 170.20-, 170.21-, 170.22-, 170.29-, 170.30-, 170.31-, 170.32-, 170.39-, 170.40, 170.41-, | | | 170.42-, 170.49-, 170.50-, 170.51-, 170.52-, 170.59-, 170.60-, 170.61-, 170.62-, 170.69-, | | | 170.70-, 170.71-, 170.72-, 170.79-, 170.92, 171.2, 171.4, 171.6, 171.9, 172, 173.1, 173.8-, | | | 173.9, 177.0-177.6, 177.81-, 177.89, 178.0, 179, 180.1-, 180.20-, 180.21-, 180.23-, 180.29-, | | | 182.0, 182.21-, 182.22-, 182.29-, 182.3, 182.40-, 182.41-, 182.42-, 182.43-, 182.44-, 182.49-, | | | I82.4Y-, I82.4Z-, I82.50-, I82.51-, I82.52-, I82.53-, I82.54-, I82.59-, I82.5Y-, I82.5Z-, | | | I82.62-, I82.72-, I82.A1-, I82.A2-, I82.B1-, I82.B2-, I82.C1-, I82.C2-, K55.1, K55.8, | | | K55.9, M31.8, M31.9 | | Chronic Kidney Disease, Stage 3 | N18.3 | # Hur et al. USA $^{\rm 186}$ • Cardiovascular disease: myocardial infarction, cerebrovascular accident, congestive heart failure, valvular heart disease, and arrhythmias. Pulmonary disease: asthma, chronic obstructive pulmonary disease, and interstitial lung disease. ## Kim L. et al. USA 192 | Chronic Lung Disease | Active tuberculosis, Asbestosis, Asthma/Reactive airway disease | |--|---| | | Bronchiectasis, Bronchiolitis obliterans, Chronic bronchitis | | | Chronic respiratory failure, Cystic fibrosis, Emphysema/Chronic Obstructive Pulmonary Disease, | | | Interstitial lung disease, Obstructive sleep apnea | | | Oxygen dependent, Pulmonary fibrosis, Restrictive lung disease
Sarcoidosis | | Diabetes Mellitus | Sarcoldosis | | Other Chronic Metabolic | Adrenal Disorders (Addison's, Adrenal Insufficiency, Cushing Syndrome, Congenital Adrenal | | Disease (except Diabetes | Hyperplasia), Glycogen or other storage diseases, | | Mellitus) | Hyper/Hypo function of pituitary gland, Inborn errors of metabolism | | Weintus) | Metabolic Syndrome, Parathyroid Dysfunction (Hyperparathyroidism, Hypoparathyroidism), Thyroid | | | dysfunction (Grave's disease, Hashimoto's Disease, Hyperthyroidism, Hypothyroidism) | | Blood | Alpha thalassemia, Aplastic anemia, Beta thalassemia, | | Disorders/Hematologic | Coagulopathy (Factor V Leiden, Von Willebrand Disease), Hemoglobin S-beta thalassemia, Leukopenia, | | Conditions | Myelodysplastic syndrome, Neutropenia, Pancytopenia, Polycythemia vera, Sickle cell disease, | | | Splenectomy/Asplenia | | | Thrombocytopenia | | Cardiovascular Disease | Aortic aneurysm, history of; Aortic/Mitral/Tricuspid/Pulmonic valve replacement, history of; Aortic | | (except hypertension) | regurgitation; Aortic stenosis; Atherosclerotic cardiovascular disease; Atrial fibrillation; Atrioventricular | | | blocks; Automated implantable devices/Pacemaker; Bundle branch block; Cardiomyopathy; Carotid | | | stenosis; Cerebral vascular accident/Incident/Stroke, history of; Congenital heart disease; Coronary | | | artery bypass grafting, history of;
Coronary artery disease; Deep vein thrombosis, history of; Heart | | | failure/congestive heart failure; Myocardial infarction, history of; Mitral regurgitation; Mitral stenosis; | | | Peripheral artery disease; Peripheral vascular disease; Pulmonary embolism, history of; Pulmonary | | | hypertension; Pulmonic regurgitation; Pulmonic stenosis; Transient ischemic attack, history of; Tricuspid | | Hypertension | regurgitation; Tricuspid stenosis; Ventricular fibrillation, history of; Ventricular tachycardia, history of | | Neurologic Disorder | Amyotrophic lateral sclerosis, Cerebral palsy, Cognitive dysfunction, Dementia/Alzheimer's disease, | | rearringse Disorder | Developmental delay, Down syndrome/Trisomy 21, Edward's syndrome/Trisomy 18, | | | Epilepsy/seizure/seizure disorder, Mitochondrial disorder, Multiple sclerosis, | | | Muscular dystrophy, Myasthenia gravis, Neural tube defects/Spina bifida, | | | Neuropathy, Parkinson's disease, Plegias/Paralysis/Quadriplegia, Scoliosis/Kyphoscoliosis, Traumatic | | | brain injury, history of | | Immunocompromised | AIDS or CD4 count <200, Complement deficiency, | | Conditions | Graft vs. host disease, HIV Infection, Immunoglobulin, deficiency/Immunodeficiency, | | | Immunosuppressive therapy (within the last 12 months prior to admission), Leukemia, | | | Lymphoma/Hodgkins/Non-Hodgkins, Metastatic cancer, Multiple myeloma, Solid organ malignancy, | | | Steroid therapy (within 2 weeks of admission), Transplant, hematopoietic stem cell (Bone marrow | | D 1D' | transplant, peripheral stem cell transplant), history of; Transplant, solid organ, history of | | Renal Disease | Chronic kidney disease/chronic renal insufficiency; Dialysis; End stage renal disease; | | Gastrointestinal/Liver | Glomerulonephritis; Nephrotic syndrome; Polycystic kidney disease Alcoholic hepatitis; Autoimmune hepatitis, Barrett's esophagitis, Chronic liver disease, Chronic | | Disease | pancreatitis, Cirrhosis/End stage liver disease, | | Discase | Crohn's disease, Esophageal varices, Esophageal strictures, Hepatitis B, chronic; Hepatitis C, chronic; | | | | | | Non-alcoholic fatty liver disease/Non-alcoholic steatohenatitis: Ulcerative colitis | | Rheumatologic/Autoimmune | Non-alcoholic fatty liver disease/Non-alcoholic steatohepatitis; Ulcerative colitis Ankylosing spondylitis, Dermatomyositis, Juvenile idiopathic arthritis | | Rheumatologic/Autoimmune
Conditions | Ankylosing spondylitis, Dermatomyositis, Juvenile idiopathic arthritis, | | | Ankylosing spondylitis, Dermatomyositis, Juvenile idiopathic arthritis,
Kawasaki disease, Microscopic polyangiitis, Polyarteritis nodosum, | | | Ankylosing spondylitis, Dermatomyositis, Juvenile idiopathic arthritis, | ## Lee et al. UK 149 Prostate (C61), Lung (C34), Mesothelial and soft tissue (C45–C49), Urinary tract (C64–C68), Colorectal (C18–C21), CNS (C69–C72), Respiratory organs and intrathoracic organs (not lung; C30–C39), Lip, oral cavity, and pharynx (C00–C14), Breast (C50), Female genital organs (C51–C58), Myeloma (C90), Leukaemia (C91–C95), Lymphoma (C81–C85), Other haematological (C86, C88, C96), Digestive organs, non-colorectal (C15–C17, C22–C26) ## Mendy et al. USA 199 • ICD-10: obesity (E66), diabetes (E10 and E11), pure hypercholesterolemia (E78.0), asthma (J45), chronic obstructive pulmonary disease (COPD) (J44), chronic kidney disease, (N18), cardiovascular disease (I00-I99), neoplasm or a history of neoplasm (C00-D49), osteoarthritis (M15-M19), and vitamin D deficiency (E55). ### Nakeshbandi et al. USA ²⁰⁴ • BMI: three groups: normal (BMI 18.50–24.99 kg/m2), overweight (BMI 25.00–29.99 kg/m2), and obese (BMI \geq 30.00 kg/m2). ## Price-Haywood et al. USA 211 • Obesity was determined by the presence of diagnosis codes or a body-mass index (BMI) of 30 or more that was recorded during previous clinical encounters (1727 patients had a BMI of ≥30; 1071 had a BMI of <30; and 683 had missing data).E66, Z72.0, J45, J44, E10, E11, I10, I50, I25, N18, Z94, K70 through K77, C0 through D49, and B20 ## Reilev et al. Denmark 156 ICD-10- and ATC-codes used to define drug and comorbidity. | | Coding system | Codes | |------------------------------|---------------|--| | Medical history ² | | | | Chronic lung disease | ICD-10 | J41-J47 | | _ | ATC | R03AK, R03AL, R03BA, R03AC12, R03AC13, R03AC18, R03AC19, R03CC12, R03BB04, | | | | R03BB05, R03BB06, R03BB07 | | Hypertension | ICD-10 | I10 I11 I12 I13 I15 | | | ATC | C08, C03A, C07, C09 | | Ischemic heart disease | ICD-10 | I20 I21 I22 I23 I24 I25 | | | ATC | N02BA C01DA B01AC24 | | Heart failure | ICD-10 | I099A I110 I130 I132 I50 | | Atrial fibrillation | ICD-10 | I48 | | Stroke | ICD-10 | I60 I61 I62 I63 I64 I69 | | Diabetes | ICD-10 | E10 E11 E13 E14 | | | ATC | A10 | | Dementia | ICD-10 | F00 F01 F02 F03 F1073 F1173 F1273 F1373 F1473 F1573 F1673 F1873 F1973 | | | ATC | N06D | | Any cancer | ICD-10 | C00-C97, excluding C44 | | Chronic liver disease | ICD-10 | K700-K704 K709 K71-K74 K760 K766 B150 B160 B162 B18 B190 I85 | | Hospital-diagnosed kidney | ICD-10 | | | disease | | I12 I13 N00-N05 N07 N08 N11 N14 N18 N19 E102 E112 E142 | | Alcohol abuse | ICD-10 | F10 E244 G312 G621 G721 I426 K292 K70 K852 K860 Q860 Z502 Z714 Z721 | | | ATC | N07BB | | Substance abuse | ICD-10 | F11-F19 | | | ATC | N07BC | | Organ transplantation | ICD-10 | Z94 | | Medical overweight and | ICD-10 | E66 | | obesity | | | | | ATC | A08 | | Severe mental illness | ICD-10 | F20 F25 F30 F31 | | (schizophrenia, | | | | schizoaffective disorder, | | | | or bipolar disorder) | | | | | ATC | N05AN | ²Medical history is based on an ever-recording of hospital discharge diagnoses, with or without combination with drug redemption data. ACE: angiotensin-converting enzyme inhibitor; ARB: angiotensin receptor blocker; NSAID: non-steroidal anti-inflammatory drugs. ## Rentsch et al. USA ²¹² Conditions based on International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) Diagnosis Codes | Comorbid condition | ons | ICD-10-CM codes | |--------------------|--------------------------|---| | Asthma | | J45.X | | Cancer | | | | | Cancer | C00.X-C43.X, C45.X-C76.X, C80.X-C96.X, C7A.X | | | Metastatic cancer | C77.X-C79.X | | Chronic obstra | uctive pulmonary disease | J41.X, J42.X, J43.X, J44.X | | Chronic kidne | ey disease | I12.0X, I13.1X, N03.2X-N03.7X, N18.X, N19.X, N05.2X-N05.7X, N25.0X, Z49.0X - Z49.2X, Z94.0X, Z99.2X | | Diabetes mell | itus | E08.X, E10.X, E11.X, E13.X | | Hypertension | | I10.X-I13.X, I15.X, I16.X | | Liver disease | | | | | Hepatitis B virus | B16.X, B18.0X, B18.1X, B19.1X, Z22.51 | | | Hepatitis C virus | B17.10, B17.11, B18.2, B19.20, B19.21, Z22.52 | | | Hepatic decompensation | I85.01, K65.2, K70.31, K72.1X, K72.9X, K76.7, R18.8 | | | Other mild liver disease | B18.8X, B18.9X, K70.0X-K70.2X, K70.30, K70.9X, K71.3X-K71.5X, | | | | K71.7X, K73.X, K74.X, K76.0X, K76.2X-K76.4X, K76.8X, K76.9X, Z94.4 | | | Other severe liver disease | K76.6, I85.00, I85.9X, I86.4, I98.2X, K70.4X, K71.1X, K76.5X | |------------------|-----------------------------|--| | Vascular disease | | | | | Acute myocardial infarction | I21.X (not including I21.AX), I22.X | | | Cardiomyopathy | I42.X, I43.X | | | Coronary heart disease | I20.X, I24.X, I25.10, I25.110, I25.2, I25.3, I25.41, I25.42, I25.5, I25.700, I25.710, I25.720, I25.730, I25.750, I25.760, I25.790, I25.8X, I25.9 | | | Heart failure | I09.9, I11.0, I25.5, I13.0, I13.2, I50.X, P29.0 | | | Cerebrovascular accident | I60.X-I69.X, G45.X, G46.X, H34.0 | | | Peripheral vascular disease | I70.X, I71.X, I73.1-I73.9, I77.1, I79.0, I79.2, K55.1X, K55.8X, K55.9X, | | | | Z95.8X, Z95.9 | ### Robilotti et al. USA 213 - Cardiac disorder: Heart failure, myocardial infarction, valvular replacement or cardiomyopathy. - Corticosteroids (equivalent of prednisone 20 mg or higher) for at least 10 d. - Chronic lymphopenia: Absolute lymphocyte count <500 per microliter over five previous consecutive measurements. - ICI therapy consisted of the following, given within 90 d: pembrolizumab (18), nivolumab (5), atezolizumab (3), avelumab (1), durvalumab (1), ipilimumab (1), nivolumab + ipilimumab (1) and pembrolizumab followed by nivolumab (1) ### Seiglie et al. USA ²¹⁵ • Diabetes: 1) past medical history of diabetes as documented in the medical record and manually retrieved on chart review, 2) HbA1c≥6.5% during the index hospitalization, or 3) random blood glucose≥200 mg/dL at admission to the hospital with supportive history by chart review. ### 2.4. List of estimates excluded from reporting If indications were considered not explicitly defined or surrogate for a pre-existing condition, they were excluded from the reporting. The estimates for the following conditions were excluded from the reporting: - Benzodiazepines and derivates use, Antipsychotic use, Antidepressant use, Vitamin D Deficiency were considered surrogate - Thyroid alterations, Osteoarthritis, Hematologic disease, CVD or CBR (composite of cardiovascular and cerebrovascular diseases) were considered not specifically defined - Hemiplegia or paraplegia were considered syndrome or symptom but not a comorbidity - Peptic ulcer disease, Allergic rhinitis, Rhinosinusitis were considered not relevant for decision-making - Due to increasing complexity of the review, the following outcomes were excluded from the reporting: ICU mortality, mortality in the patients undergoing mechanical ventilation, ICU admission among SARS-CoV-2-positive individuals. ### 2.5. Results of the meta-analyses The following tables present the pooled estimates per outcome and group of pre-existing conditions: (i) Tables 5.1-5.7
for hospitalisation; (ii) Tables 6.1-6.7 for in-hospital mortality; (iii) Tables 7.1-7.7 for mortality among SARS-CoV-2-positively tested persons (case-mortality); (iv) Tables 8.1-8.7 for admission to an intensive care unit (ICU) among hospitalised patients, and (v) Tables 9.1-9.7 for mechanical ventilation or intubation. Figures 3-5 illustrate the ranges for the estimates with between-study heterogeneity $1^2 > 40\%$. Table 5. 1 Risk of hospitalisation in persons with liver and metabolic diseases: meta-analysis and confidence in the estimate (GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |-------------------------|-----------------------------------|---------------------|--------------------|--|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Chronic kidney disease | OR range 0.84-3.47 | 81.5 | 5 ^{181,199,209,212,2} 24 | 11,055 | no | yes | no | no | no | +++ | | AMR:
North | Chronic liver disease | OR 1 (0.59-1.68) | 0.0 | 1181 | 799 | no | na | yes | no | no | +++ | | AMR:
North | Chronic liver disease | RR 1.3 (1.1-1.6) | 0.0 | 1 ²¹⁹ | 500 | no | na | no | no | no | ++++ | | AMR:
North | Diabetes | OR 2.03 (1.73-2.38) | 37.6 | 8 ^{171,178,181,191,1}
99,209,212,224 | 12,917 | no | no | no | no | no | ++++ | | AMR:
North | Diabetes | RR 1.16 (1-1.36) | 0.0 | 1 ¹⁷² | 1,526 | no | na | yes | no | no | +++ | | AMR:
North | Dyslipidemia or
hyperlipidemia | OR range 0.62-9.3 | 91.6 | 2199,209 | 5,968 | no | yes | yes | no | no | ++ | | AMR:
South/L
atin | Chronic kidney disease | OR 2.21 (1.94-2.51) | 0.0 | 3 ^{230,233,235} | 111,013 | no | no | no | no | no | ++++ | | AMR:
South/L
atin | Diabetes | OR range 1.34-2.14 | 88.8 | 3 ^{230,233,235} | 111,013 | no | yes | no | no | no | +++ | | EUR | Chronic kidney disease | HR range 1.24-1.9 | 76.3 | 2131,159 | 11,580 | no | yes | yes | no | no | ++ | | EUR | Chronic kidney disease | OR range 0.65-2.9 | 88.7 | 2156,166 | 11,444 | no | yes | yes | no | no | ++ | | EUR | Chronic liver disease | OR 1.86 (0.89-3.9) | 38.8 | 2 156,166 | 11,444 | no | no | yes | no | no | +++ | | EUR | Diabetes | HR range 1.31-1.50 | 44.2 | 2131,159 | 11,580 | no | yes | no | no | no | +++ | | EUR | Diabetes | OR 1.77 (1.52-2.07) | 0.0 | 3 ^{151,156,166} | 12,226 | no | no | no | no | no | ++++ | | EUR | Dyslipidemia or
hyperlipidemia | HR 1.13 (0.98-1.3) | 37.5 | 2 ^{131,159} | 11,580 | no | no | yes | no | no | +++ | | EUR | Dyslipidemia or
hyperlipidemia | OR 0.74 (0.36-1.54) | 0.0 | 1166 | 322 | no | na | yes | no | no | +++ | Table 5. 2 Risk of hospitalisation in persons with respiratory diseases: meta-analysis and confidence in the estimate (GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |-------------------------|-------------------------|----------------------|--------------------|--------------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Asthma | OR range 0.94-1.92 | 66.6 | 3 ^{171,199,224} | 5,444 | no | yes | yes | no | no | ++ | | AMR:
North | Asthma | RR 0.96 (0.77-1.19) | 0.0 | 1 ¹⁷² | 1,526 | no | na | yes | no | no | +++ | | AMR:
North | COPD | OR 1.72 (1.23-2.4) | 15.2 | 4 ^{171,199,224} | 6,029 | no | no | no | no | no | ++++ | | AMR:
North | COPD | RR 1.18 (0.93-1.5) | 0.0 | 1^{172} | 1,526 | no | na | yes | no | no | +++ | | AMR:
North | COPD or asthma | OR 1.06 (0.87-1.29) | 0.0 | 2178,209 | 5,721 | no | no | yes | no | no | +++ | | AMR:
North | Obstructive sleep apnea | RR 1.23 (1.01-1.49) | 0.0 | 1^{172} | 1,526 | no | na | no | no | no | ++++ | | AMR:
North | Respiratory disease | OR 0.81 (0.53-1.23) | 0.0 | 1181 | 799 | no | na | yes | no | no | +++ | | AMR:
South/L
atin | Asthma | OR 0.73 (0.65-0.81) | 0.0 | 1 ²³³ | 89,756 | no | na | no | no | no | ++++ | | AMR:
South/L
atin | COPD | OR 1.47 (1.3-1.67) | 0.0 | 2 ^{230,233} | 100,300 | no | no | no | no | no | ++++ | | AMR:
South/L
atin | Respiratory disease | OR 1.46 (1.12-1.9) | 0.0 | 1 ²³⁵ | 10,713 | no | na | no | no | no | ++++ | | EUR | Asthma | OR 1.98 (0.52-7.43) | 0.0 | 1166 | 322 | no | na | yes | no | no | +++ | | EUR | COPD | HR range 1-1.9 | 94.1 | 2131,159 | 11,580 | no | yes | yes | no | no | ++ | | EUR | COPD | OR 2.43 (0.73-11.09) | 0.0 | 1166 | 322 | no | na | yes | no | no | +++ | | EUR | Respiratory disease | OR range 0.94-1.8 | 76.4 | 2151,156 | 11,904 | no | yes | yes | no | no | ++ | | WPR | Tuberculosis | RR 1.2 (1.04-1.38) | 0.0 | 1 ²⁶⁰ | 530 | no | na | no | no | no | ++++ | Table 5. 3 Risk of hospitalisation in persons with circulatory diseases: meta-analysis and confidence in the estimate (GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|-------------------------|---------------------|--------------------|------------------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Arrhythmia | OR 1.49 (1.03-2.14) | 0.0 | 1 ²²⁴ | 3,703 | no | na | no | no | no | ++++ | | AMR:
North | Cardiovascular disease | OR range 1.35-4.39 | 81.1 | 4 ^{171,181,199,212} | 3,125 | no | yes | no | no | no | +++ | | AMR:
North | Coronary artery disease | OR 1.18 (0.95-1.46) | 0.0 | 2 ^{209,224} | 8,982 | no | no | yes | no | no | +++ | | AMR:
North | Coronary artery disease | RR 1.02 (0.8-1.29) | 0.0 | 1172 | 1,526 | no | na | yes | no | no | +++ | | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |-------------------------|-----------------------------|---------------------|--------------------|-----------------------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Heart failure | OR range 0.69-4.43 | 80.7 | 4 ^{128,178,209,224} | 10,476 | no | yes | yes | no | no | ++ | | AMR:
North | Hypertension | OR range 1.14-1.78 | 59.3 | 5 ^{128,178,209,212,2} 24 | 11,061 | no | yes | no | no | no | +++ | | AMR:
North | Hypertension | RR 1.14 (0.97-1.33) | 0.0 | 1 ¹⁷² | 1,526 | no | na | yes | no | no | +++ | | AMR:
North | Peripheral vascular disease | OR 0.81 (0.5-1.3) | 0.0 | 1 ²²⁴ | 3,703 | no | na | yes | no | no | +++ | | AMR:
North | V.thromboembolism | OR 0.87 (0.55-1.37) | 0.0 | 1 ²²⁴ | 3,703 | no | na | yes | no | no | +++ | | AMR:
South/L
atin | Cardiovascular disease | OR range 1.09-1.3 | 64.7 | 2 ^{233,235} | 100,469 | no | yes | yes | no | no | ++ | | AMR:
South/L
atin | Hypertension | OR range 1.25-1.54 | 73.0 | 2 ^{230,233} | 100,300 | no | yes | no | no | no | +++ | | EUR | Arrhythmia | HR 1.5 (1.2-1.9) | 0.0 | 1159 | 2,143 | no | na | no | no | no | ++++ | | EUR | Arrhythmia | OR 1.39 (1.17-1.65) | 0.0 | 2 ^{229,166} | 11,444 | no | no | no | no | no | ++++ | | EUR | Cardiovascular disease | HR 1.2 (0.8-1.8) | 0.0 | 1159 | 2,143 | no | na | yes | no | no | +++ | | EUR | Cardiovascular disease | OR 1.43 (0.66-3.09) | 12.3 | 2 ^{151,166} | 1,104 | no | no | yes | no | no | +++ | | EUR | Coronary artery disease | HR 1.3 (1-1.7) | 0.0 | 1159 | 2,143 | no | na | yes | no | no | +++ | | EUR | Coronary artery disease | OR 1.4 (1.2-1.7) | 0.0 | 1 ²²⁹ | 11,122 | no | na | no | no | no | ++++ | | EUR | Heart disease | HR 1.1 (1.05-1.16) | 0.0 | 1131 | 9,437 | no | na | no | no | no | ++++ | | EUR | Heart failure | HR 1.6 (1.2-2.1) | 0.0 | 1159 | 2,143 | no | na | no | no | no | ++++ | | EUR | Heart failure | OR 2.6 (2-3.4) | 0.0 | 1 ²²⁹ | 11,122 | no | na | no | no | no | ++++ | | EUR | Hypertension | HR range 1.05-1.4 | 74.7 | 2131,159 | 11,580 | no | yes | yes | no | no | ++ | | EUR | Hypertension | OR 1.69 (1.51-1.89) | 0.0 | 3 ^{151,229,166} | 12,226 | no | no | no | no | no | ++++ | $Table \ 5. \ 4 \ Risk \ of \ hospitalisation \ in \ persons \ with \ overweight, obesity \ or \ underweight: \ meta-analysis \ and \ confidence \ in \ the \ estimate \ (GRADE)$ | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|----------------|---------------------|--------------------|--|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Obesity/BMI≥30 | OR 1.63 (1.43-1.84) | 18.0 | 7 ^{178,181,191,199,2}
09,211,224 | 14,761 | no | no | no | no | no | ++++ | | AMR:
North | Obesity/BMI≥30 | RR 1.12 (1.04-1.21) | 0.0 | 2172,218 | 6,444 | no | no | no | no | no | ++++ | | AMR:
North | Obesity/BMI≥40 | OR 2.45 (1.78-3.36) | 0.0 | 1 ²⁰⁹ | 5,279 | no | na | no | no | no | ++++ | | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |-------------------------|----------------|---------------------|--------------------|--------------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Overweight | OR 1.33 (1.16-1.53) | 0.0 | 3 ^{181,209,224} | 9,781 | no | no | no | no | no | ++++ | | AMR:
North | Underweight | OR 1.48 (0.19-11.8) | 0.0 | 1181 | 799 | no | na | yes | no | no | +++ | |
AMR:
South/L
atin | Obesity/BMI≥30 | OR range 1.4-1.74 | 56.2 | 3 ^{230,233,235} | 111,013 | no | yes | no | no | no | +++ | | EUR | Obesity/BMI≥30 | HR 1.59 (1.52-1.66) | 0.0 | 2131,159 | 11,580 | no | no | no | no | no | ++++ | | EUR | Obesity/BMI≥30 | OR range 0.99-2.1 | 96.6 | 3 ^{151,156,166} | 12,226 | no | yes | yes | no | no | ++ | $Table \ 5. \ 5 \ Risk \ of \ hospitalisation \ in \ persons \ with \ immunodeficiency: \ meta-analysis \ and \ confidence \ in \ the \ estimate \ (GRADE)$ | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |-------------------------|-----------------------------|---------------------|--------------------|------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Autoimmune condition | OR 1.24 (0.83-1.85) | 0 | 1181 | 799 | no | na | yes | no | no | +++ | | AMR:
North | Inflammatory bowel disease | RR 1.1 (0.74-1.4) | 0 | 1 ²²⁰ | 464 | no | na | yes | no | no | +++ | | AMR:
North | Immunosuppression | RR 1.14 (0.75-1.75) | 0 | 1 ¹⁷² | 1,526 | no | na | yes | no | no | +++ | | AMR:
North | Rheumatological disease | OR 1.1 (0.51-2.38) | 0 | 1 ¹⁷⁷ | 156 | no | na | yes | no | no | +++ | | AMR:
South/L
atin | Immunosuppression | OR 1.85 (1.59-2.15) | 0 | 1 ²³³ | 89,756 | no | na | no | no | no | ++++ | | EUR | Autoimmune condition | HR 1.08 (1.01-1.17) | 0 | 1131 | 9,437 | no | na | no | no | no | ++++ | | EUR | Autoimmune condition | OR 1.3 (0.45-4.01) | 0 | 1 ¹⁶⁶ | 322 | no | na | yes | no | no | +++ | | EUR | Organ transplant recipients | OR 3.4 (1.7-6.6) | 0 | 1 ²²⁹ | 11,122 | no | na | no | no | no | ++++ | | EUR | Rheumatological
disease | OR 1.5 (1.1-1.9) | 0 | 1 ²²⁹ | 11,122 | no | na | no | no | no | ++++ | Table 5. 6 Risk of hospitalisation in persons with neurological diseases or mental health disorders: meta-analysis and confidence in the estimate (GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|---------------------------|---------------------|--------------------|--------------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Cerebrovascular or stroke | OR 2.25 (1.42-3.58) | 0.0 | 1 ²²⁴ | 3,703 | no | na | no | no | no | ++++ | | AMR:
North | Dementia | OR 3.6 (2.12-6.09) | 0.0 | 1 ²²⁴ | 3,703 | no | na | no | no | no | ++++ | | AMR:
North | Depression | OR 0.97 (0.49-1.92) | 0.0 | 1 ¹⁷¹ | 1,052 | no | na | yes | no | no | +++ | | EUR | Cerebrovascular or stroke | OR 1.3 (1.08-1.56) | 0.0 | 2156,166 | 11,444 | no | no | no | no | no | ++++ | | EUR | Dementia | HR range 0.59-1.2 | 93.4 | 2131,159 | 11,580 | no | yes | yes | no | no | ++ | | EUR | Dementia | OR range 0.5-1.52 | 50.0 | 3 ^{151,156,166} | 12,226 | no | yes | yes | no | no | ++ | | EUR | Depression | OR range 0.94-6.06 | 77.0 | 2151,166 | 1,104 | no | yes | yes | no | no | ++ | | EUR | Psychiatric disorder | OR 1.72 (1.05-2.84) | 15.6 | 2151,156 | 11,904 | no | no | no | no | no | ++++ | Table 5. 7 Risk of hospitalisation in persons with oncological diseases: meta-analysis and confidence in the estimate (GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|-----------|---------------------|--------------------|-----------------------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Cancer | OR 1.05 (0.87-1.27) | 17.8 | 5 ^{171,181,199,209,2} 24 | 11,522 | no | no | yes | no | no | +++ | | EUR | Cancer | HR range 1.08-1.4 | 80.1 | 2131,159 | 11,580 | no | yes | yes | no | no | ++ | | EUR | Cancer | OR range 0.66-1.4 | 67.0 | 2156,166 | 11,444 | no | yes | yes | no | no | ++ | Table 6. 1 Risk of death (in-hospital mortality) in persons with liver and metabolic diseases: meta-analysis and confidence in the estimate (GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|------------------------|---------------------|--------------------|--|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AFR | Chronic kidney disease | HR 1.51 (1.2-1.89) | 0.0 | 1121 | 22,308 | no | na | no | no | no | ++++ | | AFR | Diabetes | HR 1.13 (0.83-1.55) | 0.0 | 1121 | 22,308 | no | na | yes | no | no | +++ | | AMR:
North | Chronic kidney disease | HR range 0.88-1.61 | 71.9 | 4 ^{170,205,209,226} | 20,564 | no | yes | yes | no | no | ++ | | AMR:
North | Chronic kidney disease | OR 1.39 (1.17-1.66) | 19.7 | 11 ^{169,173,183,188,} 193,207,210,214-216,224 | 10,661 | no | no | no | no | no* | ++++ | | AMR:
North | Chronic kidney disease | RR 1.33 (1.1-1.61) | 0.0 | 1 ¹⁹² | 2,490 | no | na | no | no | no | ++++ | | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |-------------------------|-----------------------------------|----------------------|--------------------|--|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Chronic liver disease | HR 0.95 (0.46-1.95) | 0.0 | 1 ²⁰⁵ | 5,776 | no | na | yes | no | no | +++ | | AMR:
North | Chronic liver disease | OR 1.62 (0.88-3) | 0.0 | 3185,215,216 | 1,302 | no | no | yes | no | no | +++ | | AMR:
North | Chronic liver/Cirrhosis | HR 1.95 (0.62-6.17) | 0.0 | 1 ¹⁷⁰ | 841 | no | na | yes | no | no | +++ | | AMR:
North | Chronic liver/Cirrhosis | OR 5.96 (1.29-27.66) | 29.1 | 2 ^{185,214} | 605 | no | no | no | no | no | ++++ | | AMR:
North | Chronic liver/Non-
cirrhotic | OR 1.47 (0.64-3.38) | 0.0 | 1185 | 363 | no | na | yes | no | no | +++ | | AMR:
North | Diabetes | HR 1.05 (0.96-1.14) | 0.0 | 5 ^{170,200,205,209,2} ₂₆ | 23,384 | no | no | yes | no | no | +++ | | AMR:
North | Diabetes | OR 1.33 (1.2-1.48) | 0.0 | 12 ^{169,173,188,193,} 197,207,210,214,224 | 10,843 | no | no | no | no | no** | ++++ | | AMR:
North | Diabetes | RR 1.18 (1.06-1.32) | 0.0 | 3 ^{192,204,221} | 3,340 | no | no | no | no | no | ++++ | | AMR:
North | Hepatitis | HR 0.61 (0.13-2.89) | 0.0 | 1170 | 841 | no | na | yes | no | no | +++ | | AMR:
North | Dyslipidemia or
hyperlipidemia | HR 0.95 (9.79-1.13) | 0.0 | 1 ²⁰⁹ | 2,737 | no | na | yes | no | no | +++ | | AMR:
North | Dyslipidemia or
hyperlipidemia | OR 1 (0.83-1.22) | 0.0 | 3 ^{185,193,210} | 3,435 | no | no | yes | no | no | +++ | | AMR:
North | Dyslipidemia or
hyperlipidemia | RR 0.75 (0.57-0.98) | 0.0 | 1 ²²¹ | 346 | no | na | no | no | no | ++++ | | AMR:
South/L
atin | Chronic kidney disease | HR range 1.19-1.36 | 74.6 | 2 ^{228,234} | 16,714 | no | yes | no | no | no | +++ | | AMR:
South/L
atin | Chronic kidney disease | OR 1.68 (0.94-3.09) | 0.0 | 1 ²³⁵ | 1,152 | no | na | yes | no | no | +++ | | AMR:
South/L
atin | Chronic liver disease | HR 1.09 (0.83-1.44) | 0.0 | 1 ²²⁸ | 11,321 | no | na | yes | no | no | +++ | | AMR:
South/L
atin | Diabetes | HR range 1.09-1.18 | 73.7 | 2 ^{228,234} | 16,714 | no | yes | no | no | no | +++ | | EMR | Diabetes | OR 1.64 (1.24-2.18) | 0.0 | 1123 | 2,957 | no | na | no | no | no | ++++ | | EUR | Chronic kidney disease | HR range 0.97-5.09 | 94.5 | 9 ^{131,134,138} -
141,147,157,160 | 26,635 | no | yes | no | no | no*** | +++ | | EUR | Chronic kidney disease | OR 1.92 (1.57-2.36) | 0.0 | 4 ^{147,153,156,160} | 4,914 | no | no | no | no | no | ++++ | | EUR | Chronic kidney disease | RR 1.13 (0.71-1.6) | 0.0 | 1 ¹³⁶ | 339 | no | na | yes | no | no | +++ | | EUR | Chronic liver disease | HR 1.51 (1.21-1.88) | 0.0 | 1140 | 15,194 | no | na | no | no | no | ++++ | | EUR | Chronic liver disease | OR 1.9 (0.9-3.7) | 0.0 | 1156 | 2,254 | no | na | yes | no | no | +++ | | EUR | Chronic liver/Cirrhosis | HR 2.03 (1.31-3.13) | 0.0 | 1127 | 4,035 | no | na | no | no | no | ++++ | | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |--------|-----------------------------------|----------------------|--------------------|--|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | EUR | Chronic liver/Cirrhosis | OR 3.19 (0.95-10.76) | 0.0 | 1153 | 614 | no | na | yes | no | no | +++ | | EUR | Chronic liver/Non-cirrhotic | OR 0.99 (0.47-2.11) | 0.0 | 1153 | 614 | no | na | yes | no | no | +++ | | EUR | Diabetes | HR range 0.73-2.55 | 49.7 | 9 ^{124,131,134,139} -
141,147,157,160 | 26,814 | no | yes | no | no | no | +++ | | EUR | Diabetes | OR 1.26 (1.02-1.56) | 19.6 | 5 ^{132,147,153,156,1} 60 | 5,006 | no | no | no | no | no | ++++ | | EUR | Diabetes | RR 1.23 (0.85-1.63) | 0.0 | 1136 | 339 | no | na | yes | no | no | +++ | | EUR | Dyslipidemia or
hyperlipidemia | HR 1.03 (0.93-1.13) | 0.0 | 1131 | 2,791 | no | na | yes | no | no | +++ | | WPR | Chronic kidney disease | HR range 0.66-10.84 | 92.4 | 3 ^{246,258,275} | 4,293 | no | yes | yes | no | no | ++ | | WPR | Chronic kidney disease | OR 2.65 (1.45-4.84) | 0.0 | 2 ^{240,254} | 5,974 | no | no | no | no | no | ++++ | | WPR
 Chronic liver disease | HR 1.22 (0.46-3.21) | 0.0 | 1 ²⁷⁵ | 1,000 | no | na | yes | no | no | +++ | | WPR | Diabetes | HR 1.54 (1.29-1.85) | 17.5 | 10 ^{245,249,250,252} ,
257,258,267,274,275
,277 | 11,628 | no | no | no | no | no**** | ++++ | | WPR | Diabetes | OR range 0.71-5.45 | 84.8 | 4 ^{242,254,255,269} | 5,123 | no | yes | yes | no | no | ++ | | WPR | Hepatitis | OR 1.25 (0.44-3.54) | 0.0 | 1 ²⁵⁴ | 2,665 | no | na | yes | no | no | +++ | AMR, regions of America; AFR, African region; HR, hazard ratio; EMR, Eastern Mediterranean region; EUR, European region; na, not applicable; OR, odds ratio; RR, risk ratio; WPR, Western Pacific region * Beggs: tau=-0.3091,pval=0.2183; Egger: zval=-1.424,pval=0.1544 Table 6. 2 Risk of death (in-hospital mortality) in persons with respiratory diseases: meta-analysis and confidence in the estimate (GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|---------------------|---------------------|--------------------|-----------------------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AFR | Respiratory disease | HR 0.68 (0.53-0.86) | 0.0 | 1121 | 22,308 | no | na | no | no | no | ++++ | | AFR | Tuberculosis | HR 1.3 (1.05-1.63) | 0.3 | 1121 | 22,308 | no | na | no | no | no | ++++ | | AMR:
North | Asthma | HR range 0.91-1.35 | 79.1 | 2 ^{205,226} | 16,986 | no | yes | yes | no | no | ++ | | AMR:
North | Asthma | OR 0.9 (0.71-1.13) | 0.0 | 3194,216,224 | 8,782 | no | no | yes | no | no | +++ | | AMR:
North | COPD | HR 1.23 (1.03-1.47) | 0.0 | 3 ^{205,217,226} | 17,479 | no | no | no | no | no | ++++ | | AMR:
North | COPD | OR 1.46 (0.89-2.38) | 37.9 | 5 ^{169,195,207,216,2} 24 | 3,587 | no | no | yes | no | no | +++ | | AMR:
North | COPD | RR 1.41 (1.06-1.88) | 0.0 | 1 ²²¹ | 346 | no | na | no | no | no | ++++ | | AMR:
North | COPD or asthma | HR 0.93 (0.76-1.15) | 0.0 | 1 ²⁰⁹ | 2,737 | no | na | yes | no | no | +++ | ^{**}Beggs: tau=-0.191,pval=0.2163; Egger: zval=-1.424,pval=0.1944 **Beggs: tau=-0.1212,pval=0.6384; Egger: zval=0.4612,pval=0.6446 *** Beggs: tau=0.3846,pval=0.0763; Egger: zval=1.1494,pval=0.2504 **** Beggs: tau=-0.0545,pval=0.8793; Egger: zval=0.4041,pval=0.6861 | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |-------------------------|---------------------------|----------------------|--------------------|--------------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | COPD or asthma | OR 0.8 (0.61-1.07) | 0.0 | 3188,214,215 | 3,745 | no | no | yes | no | no | +++ | | AMR:
North | Interstitial lung disease | HR 2.17 (1.76-2.69) | 0.0 | 1 ²⁰⁵ | 5,776 | no | na | no | no | no | ++++ | | AMR:
North | Respiratory disease | HR 0.82 (0.55-1.2) | 0.0 | 1 ¹⁷⁰ | 841 | no | na | yes | no | no | +++ | | AMR:
North | Respiratory disease | OR 1.69 (1.04-2.74) | 0.0 | 3 ^{185,197,210} | 980 | no | no | no | no | no | ++++ | | AMR:
North | Respiratory disease | RR 1.31 (1.13-1.52) | 0.0 | 1 ¹⁹² | 2,490 | no | na | no | no | no | ++++ | | AMR:
South/L
atin | Asthma | HR 0.93 (0.86-1) | 0.0 | 2 ^{228,234} | 16,714 | no | no | no | no | no | ++++ | | AMR:
South/L
atin | COPD | HR 1.12 (1.07-1.18) | 0.0 | 1 ²³⁴ | 5,393 | no | na | no | no | no | ++++ | | AMR:
South/L
atin | Respiratory disease | HR 1.21 (1.06-1.38) | 0.0 | 1 ²²⁸ | 11,321 | no | na | no | no | no | ++++ | | EUR | Asthma | OR 0.42 (0.19-0.91) | 0.0 | 1153 | 614 | no | na | no | no | no | ++++ | | EUR | COPD | HR 1.15 (1.03-1.29) | 0.0 | 1131 | 2,791 | no | na | no | no | no | ++++ | | EUR | COPD | OR 0.78 (0.34-1.81) | 0.0 | 1153 | 614 | no | na | yes | no | no | +++ | | EUR | COPD | RR 1.45 (0.94-1.95) | 0.0 | 1136 | 339 | no | na | no | no | no | ++++ | | EUR | Respiratory disease | HR 1.17 (1.09-1.26) | 0.0 | 4 ^{139-141,157} | 20,043 | no | no | no | no | no | ++++ | | EUR | Respiratory disease | OR 1.9 (0.47-7.64) | 30.7 | 2 ^{229,132} | 2,346 | no | no | yes | no | no | +++ | | WPR | COPD | HR 1.74 (1.03-2.95) | 0.0 | 3 ^{258,264,275} | 1,755 | no | no | no | no | no | ++++ | | WPR | COPD | OR 2.22 (1.55-3.19) | 0.0 | 4 240,242,254,273 | 6,897 | no | no | no | no | no | ++++ | | WPR | Respiratory disease | HR range 2.51-13.66 | 61.2 | 2 ^{249,257} | 409 | no | yes | yes | no | no | ++ | | WPR | Respiratory disease | OR 3.24 (0.45-23.57) | 0.0 | 1 ²⁵⁹ | 244 | no | na | yes | no | no | +++ | | WPR | Tuberculosis | OR 1.55 (0.69-3.44) | 0.0 | 1 ²⁵⁴ | 2,665 | no | na | yes | no | no | +++ | | WPR | Tuberculosis | RR 2.25 (1.35-3.75) | 0.0 | 1 ²⁶⁰ | 330 | no | na | no | no | no | ++++ | Table~6.~3~Risk~of~death~(in-hospital~mortality)~in~persons~with~circulatory~diseases:~meta-analysis~and~confidence~in~the~estimate~(GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|--------------|---------------------|--------------------|----------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AFR | Hypertension | HR 1.05 (0.88-1.27) | 0.0 | 1121 | 22,308 | no | na | yes | no | no | +++ | | AMR:
North | Arrhythmia | OR 1.29 (1.02-1.62) | 0.0 | 2188,224 | 5,101 | no | no | no | no | no | ++++ | | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |-------------------------|--------------------------------|---------------------|--------------------|---|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Cardiovascular disease | HR 1.13 (0.96-1.33) | 0.0 | 1 ²⁰⁵ | 5,776 | no | na | yes | no | no | +++ | | AMR:
North | Cardiovascular disease | OR 1.42 (0.92-2.17) | 0.0 | 4 ^{173,183,197,210} | 1,552 | no | no | yes | no | no | +++ | | AMR:
North | Cardiovascular disease | RR 1.28 (1.03-1.58) | 0.0 | 1192 | 2,490 | no | na | no | no | no | ++++ | | AMR:
North | Coronary artery disease | HR 1.17 (1.07-1.28) | 0.0 | 3 ^{170,209,226} | 14,788 | no | no | no | no | no | ++++ | | AMR:
North | Coronary artery disease | OR 1.19 (1.03-1.38) | 10.2 | 6 ^{188,193,195,207,2} 24 | 9,335 | no | no | no | no | no | ++++ | | AMR:
North | Heart disease | OR 0.98 (0.46-2.09) | 0.0 | 1185 | 363 | no | na | yes | no | no | +++ | | AMR:
North | Heart failure | HR range 1.05-1.77 | 87.2 | 3 ^{170,209,226} | 14,788 | no | yes | yes | no | no | ++ | | AMR:
North | Heart failure | OR 1.31 (1.08-1.6) | 31.6 | 8 ^{188,193,195,207,2}
14,215,224 | 9,994 | no | no | no | no | no | ++++ | | AMR:
North | Hypertension | HR 0.88 (0.8-0.95) | 0.0 | 4 ^{170,200,205,209} | 12,174 | no | no | no | no | no | ++++ | | AMR:
North | Hypertension | OR range 0.3-17.02 | 68.6 | 12 ^{169,173,185,188,} 193,195,197,210,214 -216,224 | 11,321 | no | yes | yes | no | no* | ++ | | AMR:
North | Hypertension | RR range 0.81-1.07 | 54.5 | 2192,204 | 2,994 | no | yes | yes | no | no | ++ | | AMR:
North | Peripheral vascular
disease | OR 1.1 (0.72-1.68) | 0.0 | 1 ²²⁴ | 2,015 | no | na | yes | no | no | +++ | | AMR:
North | V.thromboembolism | OR range 0.75-6 | 66.3 | 2 ^{210,224} | 2,253 | no | yes | yes | no | no | ++ | | AMR:
South/L
atin | Cardiovascular disease | HR 1.02 (0.95-1.1) | 0.0 | 1 ²²⁸ | 11,321 | no | na | yes | no | no | +++ | | AMR:
South/L
atin | Cardiovascular disease | OR 1.26 (0.95-1.67) | 0.0 | 1 ²³⁵ | 1,152 | no | na | yes | no | no | +++ | | AMR:
South/L
atin | Hypertension | HR 1.08 (1.05-1.11) | 0.0 | 1 ²³⁴ | 5,393 | no | na | no | no | no | ++++ | | EMR | Cardiovascular disease | OR 1.1 (0.84-1.44) | 0.0 | 1123 | 2,957 | no | na | yes | no | no | +++ | | EUR | Arrhythmia | OR 1.37 (1.07-1.74) | 0.0 | 2153,156 | 2,868 | no | no | no | no | no | ++++ | | EUR | Cardiovascular disease | HR 1.9 (1.19-3.01) | 0.0 | 2124,157 | 608 | no | no | no | no | no | ++++ | | EUR | Cardiovascular disease | RR 0.84 (0.57-1.18) | 0.0 | 1136 | 339 | no | na | yes | no | no | +++ | | EUR | Coronary artery disease | HR range 1.19-2.93 | 83.3 | 4 ^{134,137,141,147} | 4,695 | no | yes | no | no | no | +++ | | EUR | Coronary artery disease | OR range 1.0-1.51 | 55.8 | 3 ^{147,153,156} | 4,432 | no | yes | yes | no | no | ++ | | EUR | Heart disease | HR 1.2 (1.12-1.28) | 33.8 | 2131,140 | 17,985 | no | no | no | no | no | ++++ | | EUR | Heart failure | HR range 1.05-3.1 | 80.9 | 2138,139 | 3,645 | no | yes | yes | no | no | ++ | | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |--------|-------------------------|-----------------------|--------------------|--|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | EUR | Heart failure | OR 1.37 (1.02-1.84) | 0.0 | 2153,156 | 2,868 | no | no | no | no | no | ++++ | | EUR | Hypertension | HR range 0.82-1.48 | 58.0 | 8 ^{127,131,134,139,1}
41,147,157,160 | 15,285 | no | yes | yes | no | no | ++ | | EUR | Hypertension | OR 1.09 (0.88-1.34) | 24.6 | 4 ^{147,153,156,160} | 4,914 | no | no | yes | no | no | +++ | | EUR | Hypertension | RR 1.32 (0.91-1.81) | 0.0 | 1136 | 339 | no | na | yes | no | no | +++ | | EUR | Infarction | HR 1.21 (0.93-1.59) | 0.0 | 1139 | 3,454 | no
 na | yes | no | no | +++ | | EUR | V.thromboembolism | OR 3.07 (0.65-14.4) | 0.0 | 1153 | 614 | no | na | yes | no | no | +++ | | WPR | Arrhythmia | HR 1.94 (0.24-3.62) | 0.0 | 1 ²⁵² | 596 | no | na | yes | no | no | +++ | | WPR | Cardiovascular disease | HR 1.95 (1.46-2.61) | 0.0 | 7 ^{241,245,249,257,2}
58,264,275 | 4,091 | no | no | no | no | no | ++++ | | WPR | Cardiovascular disease | OR 1.4 (0.94-2.09) | 0.0 | 2 ^{240,262} | 3,416 | no | no | yes | no | no | +++ | | WPR | Coronary artery disease | HR range 0.972-4.28 | 63.7 | 3 ^{241,252,275} | 3,186 | no | yes | yes | no | no | ++ | | WPR | Coronary artery disease | OR 1.11 (0.72-1.72) | 0.0 | 2 ^{254,276} | 2,836 | no | no | yes | no | no | +++ | | WPR | Heart disease | OR 4.54 (1.47-14.01) | 0.0 | 2 ^{256,263} | 2,825 | no | no | no | no | no | ++++ | | WPR | Heart failure | HR 3.3 (1.33-8.19) | 0.0 | 1 ²⁴⁶ | 2,877 | no | na | no | no | no | ++++ | | WPR | Hypertension | HR 1.85 (1.48-2.3) | 20.3 | 8 ^{245,246,252,257,2}
65,268,272,275 | 8,794 | no | no | no | no | no | ++++ | | WPR | Hypertension | OR 1.11 (0.94-1.31) | 0.0 | 9 ^{239,240,242,248,2}
54,259,262,263,269 | 9,696 | no | no | yes | no | no | +++ | | WPR | Infarction | HR 28.9 (10.64-78.51) | 0.0 | 1 ²⁴⁶ | 2,877 | no | na | no | no | no | ++++ | * Beggs: tau=0.2424,pval=0.3108; Egger: zval=1.9076,pval=0.0564 AMR, regions of America; AFR, African region; HR, hazard ratio; EMR, Eastern Mediterranean region; EUR, European region; na, not applicable; OR, odds ratio; RR, risk ratio; WPR, Western Pacific region Table~6.~4~Risk~of~death~(in-hospital~mortality)~in~persons~with~overweight,~obesity~or~underweight:~meta-analysis~and~confidence~in~the~estimate~(GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|----------------|---------------------|--------------------|---|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Obesity/BMI≥30 | HR 1.02 (0.92-1.13) | 0.0 | 4180,205,209,226 | 21,410 | no | no | yes | no | no | +++ | | AMR:
North | Obesity/BMI≥30 | OR 1.14 (1.02-1.27) | 0.0 | 11 ^{169,185,188,193,} 197,207,210,211,215 ,216,224 | 11,608 | no | no | no | no | no* | ++++ | | AMR:
North | Obesity/BMI≥30 | RR 1.16 (0.98-1.36) | 15.9 | 2192,204 | 2,994 | no | no | yes | no | no | +++ | | AMR:
North | Obesity/BMI≥40 | HR 1.41 (1.03-1.93) | 0.0 | 2180,209 | 4,424 | no | no | no | no | no | ++++ | | AMR:
North | Obesity/BMI≥40 | OR 1.7 (1.26-2.29) | 0.0 | 2193,216 | 3,356 | no | no | no | no | no | ++++ | | AMR:
North | Overweight | HR 0.89 (0.77-1.02) | 0.0 | 3 ^{180,205,209} | 10,200 | no | no | yes | no | no | +++ | | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |-------------------------|----------------|---------------------|--------------------|---------------------------------------|----------|----------------------|-----------------------|---------------------|-------------------|---------------|---------| | AMR:
North | Overweight | OR 0.8 (0.62-1.03) | 0.0 | 2 ^{215,224} | 2,432 | no | no | yes | no | no | +++ | | AMR:
North | Overweight | RR 1.4 (1.1-1.9) | 0.0 | 1 ²⁰⁴ | 504 | no | na | no | yes,
NOS
=4 | no | +++ | | AMR:
North | Underweight | HR range 1.15-2.37 | 87.2 | 2180,205 | 7,463 | no | yes | yes | no | no | ++ | | AMR:
North | Underweight | OR 1.37 (0.52-3.64) | 0.0 | 1 ²⁰⁷ | 200 | no | na | yes | no | no | +++ | | AMR:
South/L
atin | Obesity/BMI≥30 | HR range 1.08-1.29 | 79.5 | 2 ^{228,234} | 16,714 | no | yes | yes | no | no | ++ | | EUR | Obesity/BMI≥30 | HR range 1.07-3.04 | 89.2 | 6 ^{127,131,139,140,1} 43,160 | 26,189 | no | yes | no | no | no | +++ | | EUR | Obesity/BMI≥30 | OR range 1.2-12.1 | 75.5 | 3126,156,160 | 3,143 | no | yes | no | no | no | +++ | * Beggs: tau=0.4182,pval=0.0866; Egger: zval=2.1869,pval=0.0287 AMR, regions of America; AFR, African region; HR, hazard ratio; EMR, Eastern Mediterranean region; EUR, European region; na, not applicable; OR, odds ratio; RR, risk ratio; WPR, Western Pacific region $Table \ 6.\ 5\ Risk \ of \ death \ (in-hospital \ mortality) \ in \ persons \ with \ immunodeficiency: \ meta-analysis \ and \ confidence \ in \ the \ estimate \ (GRADE)$ | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|-----------------------------|---------------------|--------------------|------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AFR | HIV | HR 1.45 (1.14-1.84) | 0.0 | 1121 | 22,308 | no | na | no | no | no | ++++ | | AMR:
North | Autoimmune condition | HR 1.21 (0.74-1.98) | 0.0 | 1 ²⁰⁵ | 5,776 | no | na | yes | no | no | +++ | | AMR:
North | HIV | HR range 1.13-2.47 | 52.9 | 2170,217 | 1,334 | no | yes | yes | no | no | ++ | | AMR:
North | HIV | OR 0.07 (0.03-0.52) | 0.0 | 1 ²⁰⁶ | 251 | no | na | no | no | no | ++++ | | AMR:
North | Inflammatory bowel disease | HR 1.18 (0.35-4.06) | 0.0 | 1 ¹⁷⁰ | 841 | no | na | yes | no | no | +++ | | AMR:
North | Immunosuppression | HR 1.57 (0.66-3.73) | 0.0 | 1 ¹⁷⁰ | 841 | no | na | yes | no | no | +++ | | AMR:
North | Immunosuppression | OR 3.6 (1.52-8.47) | 0.0 | 1 ²¹⁶ | 522 | no | na | no | no | no | ++++ | | AMR:
North | Immunosuppression | RR 1.39 (1.13-1.7) | 0.0 | 1192 | 2,490 | no | na | no | no | no | ++++ | | AMR:
North | Organ transplant recipients | HR 0.99 (0.45-2.17) | 0.0 | 1 ¹⁷⁰ | 841 | no | na | yes | no | no | +++ | | AMR:
North | Rheumatological disease | HR 0.48 (0.17-1.34) | 0.0 | 1 ¹⁷⁰ | 841 | no | na | yes | no | no | +++ | | AMR:
North | Rheumatological disease | RR 0.87 (0.66-1.16) | 0.0 | 1192 | 2,490 | no | na | yes | no | no | +++ | | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |-------------------------|-----------------------------|---------------------|--------------------|----------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
South/L
atin | Immunosuppression | HR 1.09 (1.03-1.16) | 0.0 | 2 ^{228,234} | 16,714 | no | no | no | no | no | ++++ | | EUR | Autoimmune condition | HR 1.19 (1.06-1.33) | 0.0 | 1131 | 2,791 | no | na | no | no | no | ++++ | | EUR | HIV | HR 1.5 (1.02-2.22) | 0.0 | 1142 | 47,539 | no | na | no | no | no | ++++ | | EUR | HIV | OR 1.32 (0.24-7.36) | 0.0 | 1153 | 614 | no | na | yes | no | no | +++ | | EUR | Immunosuppression | OR 2.11 (1.08-4.09) | 0.0 | 1130 | 302 | no | na | no | no | no | ++++ | | EUR | Organ transplant recipients | OR 4.2 (1.6-11.4) | 0.0 | 1 ¹⁵⁶ | 2,254 | no | na | no | no | no | ++++ | | EUR | Rheumatological disease | OR 1.2 (0.8-1.9) | 0.0 | 1 ¹⁵⁶ | 2,254 | no | na | yes | no | no | +++ | Table 6. 6 Risk of death (in-hospital mortality) in persons with neurological diseases or mental health disorders: meta-analysis and confidence in the estimate (GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |-------------------------|------------------------|---------------------|--------------------|------------------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Cerebrovascular/Stroke | HR 1.3 (0.84-2.01) | 0.0 | 1 ¹⁷⁰ | 841 | no | na | yes | no | no | +++ | | AMR:
North | Cerebrovascular/Stroke | OR 1.06 (0.78-1.45) | 0.0 | 3195,210,224 | 2,931 | no | no | yes | no | no | +++ | | AMR:
North | Dementia | OR 2.03 (1.46-2.83) | 0.0 | 1 ²²⁴ | 2,015 | no | na | no | no | no | ++++ | | AMR:
North | Neurological disease | RR 1.25 (1.04-1.5) | 0.0 | 1 ¹⁹² | 2,490 | no | na | no | no | no | ++++ | | AMR:
South/L
atin | Neurological disease | HR 1.34 (1.16-1.54) | 0.0 | 1 ²²⁸ | 11,321 | no | na | no | no | no | ++++ | | EUR | Cerebrovascular/Stroke | HR 2.12 (1.29-3.47) | 0.0 | 1160 | 482 | no | na | no | no | no | ++++ | | EUR | Cerebrovascular/Stroke | OR range 0.89-3.41 | 79.8 | 3153,156,160 | 3,350 | no | yes | yes | no | no | ++ | | EUR | Dementia | HR range 1.26-1.64 | 75.1 | 3127,131,140 | 22,020 | no | yes | no | no | no | +++ | | EUR | Dementia | OR range 1.32-15.81 | 49.7 | 4 ^{129,132,153,156} | 3,587 | no | yes | no | no | no | +++ | | EUR | Neurological disease | HR 1.18 (1.08-1.28) | 0.0 | 2127,140 | 19,229 | no | no | no | no | no | ++++ | | EUR | Psychiatric disorder | OR 2.9 (1.3-6.6) | 0.0 | 1156 | 2,254 | no | na | no | no | no | ++++ | | WPR | Cerebrovascular/Stroke | HR 1.44 (0.89-2.35) | 0.0 | 4 ^{249,252,258,264} | 1,454 | no | no | yes | no | no | +++ | | WPR | Cerebrovascular/Stroke | OR range 1.25-4.257 | 61.1 | 3 ^{239,240,254} | 6,634 | no | yes | no | no | no | +++ | | WPR | Dementia | HR 7.7 (1.5-39.61) | 0.0 | 1 ²⁴⁹ | 103 | no | na | no | no | no | ++++ | Table~6.~7~Risk~of~death~(in-hospital~mortality)~in~persons~with~oncological~diseases:~meta-analysis~and~confidence~in~the~estimate~(GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|---------------------|----------------------|--------------------|-----------------------------------|----------|----------------------|-----------------------
---------------------|------|---------------|---------| | AMR:
North | Cancer | HR 1.19 (1.06-1.33) | 0.0 | 4 ^{200,205,209,226} | 22,543 | no | no | no | no | no | ++++ | | AMR:
North | Cancer | OR 1.02 (0.88-1.18) | 0.0 | 5 ^{188,193,210,216,2} 24 | 8,695 | no | no | yes | no | no | +++ | | AMR:
North | Cancer/Active | HR 1.01 (0.55-1.83) | 0.0 | 1 ¹⁷⁰ | 841 | no | na | yes | no | no | +++ | | AMR:
North | Cancer/Active | OR 1.57 (0.46-5.36) | 0.0 | 1 ²¹⁵ | 417 | no | na | yes | no | no | +++ | | EUR | Cancer | HR 1.2 (1.11-1.3) | 32.1 | 3 ^{131,139,140} | 21,439 | no | no | no | no | no | ++++ | | EUR | Cancer | OR 1.2 (0.9-1.6) | 0.0 | 1156 | 2,254 | no | na | yes | no | no | +++ | | EUR | Cancer/Active | HR 1.44 (1.16-1.79) | 25.6 | 3127,137,141 | 5,602 | no | no | no | no | no | ++++ | | EUR | Cancer/Active | OR 4.68 (1.47-14.88) | 0.0 | 1126 | 407 | no | na | no | no | no | ++++ | | EUR | Cancer/ Hematologic | HR 1.74 (1.28-2.37) | 0.0 | 1164 | 1,183 | no | na | no | no | no | ++++ | | EUR | Cancer/Hematologic | OR range 1.24-6.65 | 64.8 | 2 ^{153,162} | 706 | no | yes | yes | no | no | ++ | | EUR | Cancer/Solid | OR 0.74 (0.4-1.35) | 0.0 | 1 ¹⁵³ | 614 | no | na | yes | no | no | +++ | | WPR | Cancer | HR 1.37 (0.89-2.1) | 8.9 | 4 ^{252,253,258,275} | 3,871 | no | no | yes | no | no | +++ | | WPR | Cancer | OR 3.23 (2.33-4.48) | 0.0 | 4 ^{240,242,254,255} | 6,967 | no | no | no | no | no | ++++ | Table~7.~1~Risk~of~death~(case~mortality)~in~persons~with~liver~and~metabolic~diseases:~meta-analysis~and~confidence~in~the~estimate~(GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|------------------------|---------------------|--------------------|--------------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AFR | Chronic kidney disease | HR 1.92 (1.51-2.45) | 0.0 | 1121 | 22,308 | no | na | no | no | no | ++++ | | AFR | Diabetes | HR 2.02 (1.47-2.76) | 0.0 | 1121 | 22,308 | no | na | no | no | no | ++++ | | AMR:
North | Chronic kidney disease | HR 1.53 (1.32-1.78) | 0.0 | 1189 | 5,902 | no | na | no | no | no | ++++ | | AMR:
North | Chronic kidney disease | OR range 1.36-2.85 | 76.9 | 3 ^{181,184,225} | 39,857 | no | yes | no | no | no | +++ | | AMR:
North | Chronic kidney disease | RR 1.17 (0.83-1.65) | 0.0 | 1 ²²³ | 6,916 | no | na | yes | no | no | +++ | | AMR:
North | Chronic liver disease | HR 1.16 (0.94-1.44) | 0.0 | 1189 | 5,902 | no | na | yes | no | no | +++ | | AMR:
North | Chronic liver disease | OR range 0.9-2.62 | 71.3 | 2181,184 | 32,265 | no | yes | yes | no | no | ++ | | AMR:
North | Chronic liver disease | RR 3 (1.5-6.0) | 0.0 | 1 ²¹⁹ | 500 | no | na | no | no | no | ++++ | | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |-------------------------|-----------------------------------|---------------------|--------------------|--------------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Diabetes | HR 1.21 (1.06-1.4) | 0.0 | 1189 | 5,902 | no | na | no | no | no | ++++ | | AMR:
North | Diabetes | OR range 1.11-2.4 | 75.4 | 3175,181,184 | 32,869 | no | yes | yes | no | no | ++ | | AMR:
North | Diabetes | RR 1.16 (0.89-1.52) | 0.0 | 1 ²²³ | 6,916 | no | na | yes | no | no | +++ | | AMR:
North | Dyslipidemia or
hyperlipidemia | RR 1.47 (1.02-2.11) | 0.0 | 1 ²²³ | 6,916 | no | na | no | no | no | ++++ | | AMR:
South/L
atin | Chronic kidney disease | HR range 0.7-2.679 | 88.9 | 3 ^{229,236,237} | 61,200 | no | yes | yes | no | no | ++ | | AMR:
South/L
atin | Chronic kidney disease | OR 1.44 (1.01-2.06) | 0.0 | 1 ²³⁰ | 10,544 | no | na | no | no | no | ++++ | | AMR:
South/L
atin | Diabetes | HR range 1.3-1.73 | 52.6 | 3 ^{229,236,237} | 61,200 | no | yes | no | no | no | +++ | | AMR:
South/L
atin | Diabetes | OR 1.5 (1.13-1.98) | 0.0 | 1 ²³⁰ | 10,544 | no | na | no | no | no | ++++ | | EUR | Chronic kidney disease | HR 1.31 (1.21-1.42) | 0.0 | 2131,159 | 5,156 | no | no | no | no | no | ++++ | | EUR | Chronic kidney disease | OR 1.9 (1.4-2.6) | 0.0 | 1156 | 11,122 | no | na | no | no | no | ++++ | | EUR | Chronic liver disease | OR 1.8 (1-3.3) | 0.0 | 1 ¹⁵⁶ | 11,122 | no | na | yes | no | no | +++ | | EUR | Diabetes | HR 1.35 (1.18-1.54) | 16.8 | 2131,159 | 5,156 | no | no | no | no | no | ++++ | | EUR | Diabetes | OR 1.6 (1.3-2) | 0.0 | 1156 | 11,122 | no | na | no | no | no | ++++ | | EUR | Dyslipidemia or
hyperlipidemia | HR range 1.01-1.4 | 48.6 | 2131,159 | 5,156 | no | yes | yes | no | no | ++ | | WPR | Chronic kidney disease | HR 1.67 (0.95-2.93) | 0.0 | 2 ^{247,251} | 8,541 | no | no | yes | no | no | +++ | | WPR | Diabetes | HR 1.44 (0.96-2.17) | 0.0 | 1 ²⁵¹ | 8,266 | no | na | yes | no | no | +++ | $\label{thm:case mortality} Table~7.~2~Risk~of~death~(case~mortality)~in~persons~with~respiratory~diseases:~meta-analysis~and~confidence~in~the~estimate~(GRADE)$ | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|---------------------|---------------------|--------------------|------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AFR | Respiratory disease | HR 0.92 (0.72-1.18) | 0.0 | 1121 | 22,308 | no | na | yes | no | no | +++ | | AFR | Tuberculosis | HR 1.57 (1.25-1.97) | 0.0 | 1121 | 22,308 | no | na | no | no | no | ++++ | | AMR:
North | Asthma | OR 0.63 (0.38-1.04) | 0.0 | 1 ²²⁵ | 7,592 | no | na | yes | no | no | +++ | | AMR:
North | Asthma | RR 0.81 (0.54-1.21) | 0.0 | 1 ²²³ | 6,916 | no | na | yes | no | no | +++ | | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |-------------------------|---------------------|---------------------|--------------------|----------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Respiratory disease | HR 1.01 (0.87-1.17) | 0.0 | 1189 | 5,902 | no | na | yes | no | no | +++ | | AMR:
North | Respiratory disease | OR 1.24 (1.08-1.42) | 0.0 | 2181,184 | 32,265 | no | no | no | no | no | ++++ | | AMR:
North | Respiratory disease | RR 0.93 (0.6-1.42) | 0.0 | 1 ²²³ | 6,916 | no | na | yes | no | no | +++ | | AMR:
South/L
atin | Asthma | HR 0.78 (0.47-1.28) | 0.0 | 1 ²³⁶ | 7,497 | no | na | yes | no | no | +++ | | AMR:
South/L
atin | COPD | HR 1.49 (1.22-1.84) | 39.8 | 2 ^{229,236} | 59,130 | no | no | no | no | no | ++++ | | AMR:
South/L
atin | COPD | OR 1.68 (1.22-2.31) | 0.0 | 1 ²³⁰ | 10,544 | no | na | no | no | no | ++++ | | AMR:
South/L
atin | Respiratory disease | HR range 2.6-5.21 | 80.0 | 2 ^{229,237} | 53,703 | no | yes | no | no | no | +++ | | EUR | COPD | HR 1.08 (0.96-1.22) | 0.0 | 2131,159 | 5,156 | no | no | yes | no | no | +++ | | EUR | Respiratory disease | OR 1.4 (1.1-1.8) | 0.0 | 1156 | 11,122 | no | na | no | no | no | ++++ | | WPR | COPD | HR 1.43 (1.01-2.03) | 0.0 | 2 ^{247,251} | 8,541 | no | no | no | no | no | ++++ | | WPR | Tuberculosis | RR 2.17 (1.4-3.37) | 0.0 | 1 ²⁶⁰ | 530 | no | na | no | no | no | ++++ | Table~7.~3~Risk~of~death~(case~mortality)~in~persons~with~circulatory~diseases:~meta-analysis~and~confidence~in~the~estimate~(GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|------------------------|---------------------|--------------------|------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AFR | Hypertension | HR 1.02 (0.84-1.24) | 0.0 | 1121 | 22,308 | no | na | yes | no | no | +++ | | AMR:
North | Cardiovascular disease | HR 1.16 (1-1.35) | 0.0 | 1189 | 5,902 | no | na | yes | no | no | +++ | | AMR:
North | Cardiovascular disease | OR 1.52 (0.53-4.38) | 0.0 | 1181 | 804 | no | na | yes | no | no | +++ | | AMR:
North | Heart failure | OR 1.42 (1.21-1.67) | 0.0 | 1184 | 31,461 | no | na | no | no | no | ++++ | | AMR:
North | Heart failure | RR 0.84 (0.56-1.27) | 0.0 | 1 ²²³ | 6,916 | no | na | yes | no | no | +++ | | AMR:
North | Hypertension | HR 1 (0.87-1.16) | 0.0 | 1189 | 5,902 | no | na | yes | no | no | +++ | | AMR:
North | Hypertension | OR 1 (0.42-2.38) | 0.0 | 1 ¹⁷⁵ | 604 | no | na | yes | no | no | +++ | | AMR:
North | Hypertension | RR 1.38 (0.93-2.06) | 0.0 | 1 ²²³ | 6,916 | no | na | yes | no | no | +++ | | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |-------------------------|--------------------------------|---------------------|--------------------|----------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Infarction | OR 1.97 (1.64-2.35) | 0.0 | 1184 | 31,461 | no | na | no | no | no | ++++ | | AMR:
North | Infarction | RR 1.66 (1.04-2.64) | 0.0 | 1 ²²³ | 6,916 | no | na | no | no | no | ++++ | | AMR:
North | Peripheral vascular
disease | OR 0.89 (0.74-1.07) | 0.0 | 1 ¹⁸⁴ | 31,461 | no | na | yes | no | no | +++ | | AMR:
North | Peripheral vascular disease | RR 1.31 (0.89-1.91) | 0.0 | 1 ²²³ | 6,916 | no | na | yes | no | no | +++ | |
AMR:
South/L
atin | Cardiovascular disease | HR range 0.872-8.9 | 98.2 | 2 ^{236,237} | 9,567 | no | yes | yes | no | no | ++ | | AMR:
South/L
atin | Hypertension | HR 1.38 (1.09-1.75) | 0.0 | 1 ²³⁶ | 7,497 | no | na | no | no | no | ++++ | | AMR:
South/L
atin | Hypertension | OR range 1.49-3.284 | 70.7 | 2 ^{230,232} | 10,651 | no | yes | yes | no | no | ++ | | EUR | Arrhythmia | HR 1.8 (1.3-2.5) | 0.0 | 1159 | 2,362 | no | na | no | no | no | ++++ | | EUR | Arrhythmia | OR 1.6 (1.2-2) | 0.0 | 1156 | 11,122 | no | na | no | no | no | ++++ | | EUR | Cardiovascular disease | HR 1.2 (0.6-2.2) | 0.0 | 1159 | 2,362 | no | na | yes | no | no | +++ | | EUR | Coronary artery disease | HR 1.7 (1.2-2.5) | 0.0 | 1159 | 2,362 | no | na | no | no | no | ++++ | | EUR | Coronary artery disease | OR 1.1 (0.9-1.4) | 0.0 | 1 ²²⁹ | 11,122 | no | na | yes | no | no | +++ | | EUR | Heart disease | HR 1.03 (0.95-1.11) | 0.0 | 1131 | 2,794 | no | na | yes | no | no | +++ | | EUR | Heart failure | HR 2.3 (1.6-3.2) | 0.0 | 1159 | 2,362 | no | na | no | no | no | ++++ | | EUR | Heart failure | OR 1.8 (1.3-2.4) | 0.0 | 1156 | 11,122 | no | na | no | no | no | ++++ | | EUR | Hypertension | HR range 0.95-1.6 | 91.9 | 2131,159 | 5,156 | no | yes | yes | no | no | ++ | | EUR | Hypertension | OR 1.3 (1.1-1.6) | 0.0 | 1156 | 11,122 | no | na | no | no | no | ++++ | | WPR | Coronary artery disease | HR range 1.129-3.01 | 87.7 | 2 ^{247,251} | 8,541 | no | yes | yes | no | no | ++ | | WPR | Hypertension | HR 1.25 (0.73-2.14) | 0.0 | 1 ²⁵¹ | 8,266 | no | na | yes | no | no | +++ | Table 7. 4 Risk of death (case mortality) in persons with overweight, obesity or underweight: meta-analysis and confidence in the estimate (GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|----------------|---------------------|--------------------|----------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Obesity/BMI≥30 | HR 1.42 (1.19-1.7) | 0.0 | 1189 | 5,902 | no | na | no | no | no | ++++ | | AMR:
North | Obesity/BMI≥30 | OR 1.43 (0.82-2.48) | 5.6 | 2175,181 | 1,408 | no | no | yes | no | no | +++ | | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |-------------------------|----------------|---------------------|--------------------|--------------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Obesity/BMI≥30 | RR 1.15 (0.92-1.44) | 0.0 | 2 ^{218,223} | 11,834 | no | no | yes | no | no | +++ | | AMR:
North | Obesity/BMI≥40 | RR 3.29 (2.07-5.22) | 0.0 | 1 ²²³ | 6,916 | no | na | no | no | no | ++++ | | AMR:
North | Overweight | OR 0.91 (0.3-2.79) | 0.0 | 1181 | 804 | no | na | yes | no | no | +++ | | AMR:
North | Overweight | RR 0.91 (0.62-1.35) | 0.0 | 1 ²²³ | 6,916 | no | na | yes | no | no | +++ | | AMR:
North | Underweight | HR 0.97 (0.66-1.41) | 0.0 | 1189 | 5,902 | no | na | yes | no | no | +++ | | AMR:
North | Underweight | OR 3.74 (0.21-66.6) | 0.0 | 1181 | 804 | no | na | yes | no | no | +++ | | AMR:
North | Underweight | RR 1.81 (0.99-3.3) | 0.0 | 1 ²²³ | 6,916 | no | na | yes | no | no | +++ | | AMR:
South/L
atin | Obesity/BMI≥30 | HR range 1.25-1.777 | 77.0 | 3 ^{229,236,237} | 61,200 | no | yes | no | no | no | +++ | | AMR:
South/L
atin | Obesity/BMI≥30 | OR 1.74 (1.35-2.26) | 0.0 | 1 ²³⁰ | 10,544 | no | na | no | no | no | ++++ | | EUR | Obesity/BMI≥30 | HR 0.98 (0.9-1.07) | 0.0 | 2131,159 | 5,156 | no | no | yes | no | no | +++ | | EUR | Obesity/BMI≥30 | OR 1.5 (1.1-2) | 0.0 | 1156 | 11,122 | no | na | no | no | no | ++++ | Table~7.~5~Risk~of~death~(case~mortality)~in~persons~with~immunodeficiency:~meta-analysis~and~confidence~in~the~estimate~(GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |-------------------------|-----------------------------|----------------------|--------------------|----------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AFR | HIV | HR 1.7 (1.32-2.18) | 0.0 | 1121 | 22,308 | no | na | no | no | no | ++++ | | AMR:
North | Autoimmune condition | OR 0.84 (0.38-1.86) | 0.0 | 1181 | 804 | no | na | yes | no | no | +++ | | AMR:
North | HIV | HR 0.93 (0.56-1.54) | 0.0 | 1189 | 5,902 | no | na | yes | no | no | +++ | | AMR:
North | HIV | OR 1.71 (1-2.93) | 0.0 | 1184 | 31,461 | no | na | yes | no | no | +++ | | AMR:
North | Immunosuppression | RR 1.44 (0.92-2.25) | 0.0 | 1 ²²³ | 6,916 | no | na | yes | no | no | +++ | | AMR:
North | Organ transplant recipients | RR 6.54 (2.66-16.12) | 0.0 | 1 ²²³ | 6,916 | no | na | no | no | no | ++++ | | AMR:
North | Rheumatological disease | OR 1.18 (0.87-1.61) | 0.0 | 2177,184 | 31,617 | no | no | yes | no | no | +++ | | AMR:
South/L
atin | Immunosuppression | HR range 1.27-1.696 | 43.4 | 2 ^{229,236} | 59,130 | no | yes | no | no | no | +++ | | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |-------------------------|-----------------------------|--------------------|--------------------|------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
South/L
atin | Immunosuppression | OR 1.7 (1.13-2.55) | 0.0 | 1 ²³⁰ | 10,544 | no | na | no | no | no | ++++ | | EUR | Autoimmune condition | HR 1.1 (0.97-1.24) | 0.0 | 1131 | 2,794 | no | na | yes | no | no | +++ | | EUR | Organ transplant recipients | OR 3.2 (1.3-8.4) | 0.0 | 1156 | 11,122 | no | na | no | no | no | ++++ | | EUR | Rheumatological disease | OR 1 (0.8-1.6) | 0.0 | 1 ¹⁵⁶ | 11,122 | no | na | yes | no | no | +++ | Table 7. 6 Risk of death (case mortality) in persons with neurological diseases or mental health disorders: meta-analysis and confidence in the estimate (GRADE) | Region | Condition | Estimate (95% CI) | 12 | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |-------------------------|------------------------|---------------------|------|----------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Cerebrovascular/Stroke | OR 1.07 (0.9-1.28) | 0.0 | 1184 | 31,461 | no | na | yes | no | no | +++ | | AMR:
North | Cerebrovascular/Stroke | RR 1.37 (0.93-2.03) | 0.0 | 1 ²²³ | 6,916 | no | na | yes | no | no | +++ | | AMR:
North | Dementia | HR 1.47 (1.21-1.78) | 0.0 | 1189 | 5,902 | no | na | no | no | no | ++++ | | AMR:
North | Dementia | OR 1.29 (1.07-1.56) | 0.0 | 1184 | 31,461 | no | na | no | no | no | ++++ | | AMR:
South/L
atin | Neurological disease | HR 3.9 (1.9-7.8) | 0.0 | 1 ²³⁷ | 2,070 | no | na | no | no | no | ++++ | | EUR | Cerebrovascular/Stroke | OR 1.4 (1.1-1.8) | 0.0 | 1156 | 11,122 | no | na | no | no | no | ++++ | | EUR | Dementia | HR 1.92 (1.77-2.08) | 0.0 | 2131,159 | 5,156 | no | no | no | no | no | ++++ | | EUR | Dementia | OR 2 (1.5-2.6) | 0.0 | 1 ¹⁵⁶ | 11,122 | no | na | no | no | no | ++++ | | EUR | Psychiatric disorder | OR 2.5 (1.2-5.1) | 0.0 | 1 ¹⁵⁶ | 11,122 | no | na | no | no | no | ++++ | | WPR | Cerebrovascular/Stroke | HR 1.38 (0.82-2.3) | 31.9 | 2 ^{247,251} | 8,541 | no | no | yes | no | no | +++ | Table 7. 7 Risk of death (case mortality) in persons with oncological diseases: meta-analysis and confidence in the estimate (GRADE) | Region | Condition | Estimate (95% CI) | 12 | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|-----------|---------------------|------|----------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Cancer | HR 0.93 (0.75-1.14) | 0.0 | 1189 | 5,902 | no | na | yes | no | no | +++ | | AMR:
North | Cancer | OR range 0.87-1.59 | 66.7 | 2181,184 | 32,265 | no | yes | yes | no | no | ++ | | Region | Condition | Estimate (95% CI) | 12 | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|--------------|---------------------|-----|------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Cancer | RR 1.06 (0.64-1.75) | 0.0 | 1 ²²³ | 6,916 | no | na | yes | no | no | +++ | | AMR:
North | Cancer/Solid | OR 1.7 (1.19-2.43) | 0.0 | 1184 | 31,461 | no | na | no | no | no | ++++ | | EUR | Cancer | HR 1.25 (1.15-1.36) | 0.0 | 2131,159 | 5,156 | no | no | no | no | no | ++++ | | EUR | Cancer | OR 1.3 (1-1.7) | 0.0 | 1156 | 11,122 | no | na | yes | no | no | +++ | | WPR | Cancer | HR 1.02 (0.57-1.81) | 0.0 | 1 ²⁵¹ | 8,266 | no | na | yes | no | no | +++ | Table~8.~1~Risk~of~ICU~admission~in~persons~with~liver~and~metabolic~diseases:~meta-analysis~and~confidence~in~the~estimate~(GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |-------------------------|-----------------------------------|---------------------|--------------------|--|----------|----------------------|-----------------------|---------------------|------|---------------
---------| | AMR:
North | Chronic kidney disease | OR range 0.89-2 | 76.9 | 2 ^{215,222} | 899 | no | yes | yes | no | no | ++ | | AMR:
North | Chronic kidney disease | RR 1.05 (0.94-1.16) | 0.0 | 1 ¹⁹² | 2,490 | no | na | yes | no | no | +++ | | AMR:
North | Chronic liver disease | OR 1.49 (0.97-2.28) | 2.0 | 2185,215 | 799 | no | no | yes | no | no | +++ | | AMR:
North | Diabetes | OR 1.4 (1.12-1.75) | 0.0 | 6 ^{178,185,190,197,2}
15,222 | 1,958 | no | no | no | no | no | ++++ | | AMR:
North | Diabetes | RR 1.13 (1.03-1.24) | 0.0 | 1 ¹⁹² | 2,490 | no | na | no | no | no | ++++ | | AMR:
North | Dyslipidemia or
hyperlipidemia | OR 1.01 (0.63-1.63) | 0.0 | 1185 | 363 | no | na | yes | no | no | +++ | | AMR:
South/L
atin | Diabetes | OR 1.87 (1.41-4.26) | 0.0 | 1 ²³¹ | 3,844 | no | na | no | no | no | ++++ | | EMR | Diabetes | OR 5.49 (3.13-9.65) | 0.0 | 1122 | 1,158 | no | na | no | no | no | ++++ | | EUR | Chronic kidney disease | HR range 0.9-2.83 | 86.1 | 2141,160 | 1,639 | no | yes | yes | no | no | ++ | | EUR | Chronic kidney disease | OR 4.8 (1.83-12.6) | 0.0 | 1160 | 482 | no | na | no | no | no | ++++ | | EUR | Diabetes | HR 1.45 (1.1-1.91) | 0.0 | 2141,160 | 1,639 | no | no | no | no | no | ++++ | | EUR | Diabetes | OR 1.83 (1.12-2.98) | 0.0 | 2124,160 | 808 | no | no | no | no | no | ++++ | | WPR | Diabetes | HR 4.7 (1.6-14.1) | 0.0 | 1 ²³⁸ | 420 | no | na | no | no | no | ++++ | | WPR | Diabetes | OR 1.45 (1.81-4.7) | 0.0 | 1 ²⁴² | 641 | no | na | yes | no | no | +++ | Table 8. 2 Risk of ICU admission in persons with respiratory diseases: meta-analysis and confidence in the estimate (GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|---------------------|---------------------|--------------------|--------------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | COPD or asthma | OR 0.71 (0.47-1.09) | 0 | 2178,215 | 650 | no | no | yes | no | no | +++ | | AMR:
North | Respiratory disease | OR 0.94 (0.64-1.38) | 0 | 3 ^{185,190,197} | 845 | no | no | yes | no | no | +++ | | AMR:
North | Respiratory disease | RR 1.17 (1-1.37) | 0 | 1 ¹⁹² | 2,490 | no | na | yes | no | no | +++ | | EUR | Respiratory disease | HR 1.26 (0.86-1.85) | 0 | 1141 | 1,157 | no | na | yes | no | no | +++ | | WPR | COPD | OR 3.27 (1.09-7.63) | 0 | 1 ²⁴² | 641 | no | na | no | no | no | ++++ | | WPR | Respiratory disease | HR 6.2 (1.9-20.1) | 0 | 1 ²³⁸ | 420 | no | na | no | no | no | ++++ | Table~8.~3~Risk~of~ICU~admission~in~persons~with~circulatory~diseases:~meta-analysis~and~confidence~in~the~estimate~(GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |-------------------------|-------------------------|---------------------|--------------------|---------------------------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Cardiovascular disease | OR 0.7 (0.38-1.3) | 0 | 1 ¹⁹⁷ | 379 | no | na | yes | no | no | +++ | | AMR:
North | Cardiovascular disease | RR 0.98 (0.88-1.09) | 0 | 1 ¹⁹² | 2,490 | no | na | yes | no | no | +++ | | AMR:
North | Coronary artery disease | OR 1.1 (0.6-2) | 0 | 1 ²²² | 463 | no | na | yes | no | no | +++ | | AMR:
North | Heart disease | OR 0.99 (0.59-1.67) | 0 | 2185,190 | 466 | no | no | yes | no | no | +++ | | AMR:
North | Heart failure | OR 1.32 (0.78-2.23) | 0 | 2 ^{178,215} | 650 | no | no | yes | no | no | +++ | | AMR:
North | Hypertension | OR 0.96 (0.75-1.22) | 0 | 6 ^{178,185,190,197,2} 15,222 | 1,958 | no | no | yes | no | no | +++ | | AMR:
North | Hypertension | RR 0.92 (0.79-1.07) | 0 | 1 ¹⁹² | 2,490 | no | na | yes | no | no | +++ | | AMR:
South/L
atin | Hypertension | OR 1.77 (1.37-2.29) | 0 | 1 ²³¹ | 3,844 | no | na | no | no | no | ++++ | | EMR | Hypertension | OR 0.63 (0.32-1.26) | 0 | 1122 | 1,158 | no | na | yes | no | no | +++ | | EUR | Coronary artery disease | HR 0.88 (0.51-1.52) | 0 | 1141 | 1,157 | no | na | yes | no | no | +++ | | EUR | Hypertension | HR 1.37 (1.02-1.83) | 0 | 2141,160 | 1,639 | no | no | no | no | no | ++++ | | EUR | Hypertension | OR 1.61 (0.8-3.25) | 0 | 1160 | 482 | no | na | yes | no | no | +++ | | WPR | Hypertension | HR 4.6 (1.8-11.6) | 0 | 1 ²³⁸ | 420 | no | na | no | no | no | ++++ | | WPR | Hypertension | OR 1.47 (1.27-4.22) | 0 | 1 ²⁴² | 641 | no | na | yes | no | no | +++ | Table 8. 4 Risk of ICU admission in persons with overweight, obesity or underweight: meta-analysis and confidence in the estimate (GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |-------------------------|----------------|---------------------|--------------------|-----------------------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Obesity/BMI≥30 | OR 1.46 (1.06-2.02) | 27.6 | 5 ^{178,185,190,197,2} 15 | 1,495 | no | no | no | no | no | ++++ | | AMR:
North | Obesity/BMI≥30 | RR 1.31 (1.16-1.47) | 0.0 | 1 ¹⁹² | 2,490 | no | na | no | no | no | ++++ | | AMR:
North | Obesity/BMI≥40 | OR 2 (1.4-3.6) | 0.0 | 1 ²²² | 463 | no | na | no | no | no | ++++ | | AMR:
North | Overweight | OR 1.53 (0.89-2.65) | 0.0 | 2190,215 | 539 | no | no | yes | no | no | +++ | | AMR:
South/L
atin | Obesity/BMI≥30 | OR 1.43 (1.11-1.83) | 0.0 | 1 ²³¹ | 3,844 | no | na | no | no | no | ++++ | | EMR | Obesity/BMI≥30 | OR 2.27 (1.15-4.47) | 0.0 | 1122 | 1,158 | no | na | no | no | no | ++++ | | EMR | Obesity/BMI≥40 | OR 3.95 (1-15.2) | 0.0 | 1122 | 1,158 | no | na | no | no | no | ++++ | | EMR | Overweight | OR 1.91 (0.94-3.84) | 0.0 | 1122 | 1,158 | no | na | yes | no | no | +++ | | EUR | Obesity/BMI≥30 | HR 4.22 (3.02-5.91) | 0.0 | 1160 | 482 | no | na | no | no | no | ++++ | | EUR | Obesity/BMI≥30 | OR range 2.16-6.58 | 56.2 | 2135,160 | 822 | no | yes | no | no | no | +++ | AMR, regions of America; AFR, African region; HR, hazard ratio; EMR, Eastern Mediterranean region; EUR, European region; na, not applicable; OR, odds ratio; RR, risk ratio; WPR, Western Pacific region Table 8. 5 Risk of ICU admission in persons with immunodeficiency: meta-analysis and confidence in the estimate (GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|-------------------|---------------------|--------------------|------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Immunosuppression | RR 1.29 (1.13-1.47) | 0 | 1 ¹⁹² | 2,490 | no | na | no | no | no | ++++ | | EUR | HIV | OR 1.22 (0.8-1.87) | 0 | 1142 | 47,539 | no | na | yes | no | no | +++ | AMR, regions of America; EUR, European region; na, not applicable; OR, odds ratio; RR, risk ratio; WPR, Western Pacific region Table 8. 6 Risk of ICU admission in persons with neurological diseases or mental health disorders: meta-analysis and confidence in the estimate (GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|------------------------|---------------------|--------------------|---------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Neurological disease | RR 0.85 (0.7-1.04) | 0 | 1192 | 2,490 | no | na | yes | no | no | +++ | | EUR | Cerebrovascular/Stroke | HR 0.54 (0.19-1.56) | 0 | 1160 | 482 | no | na | yes | no | no | +++ | | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |--------|------------------------|---------------------|--------------------|------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | EUR | Cerebrovascular/Stroke | OR 0.52 (0.13-2.05) | 0 | 1160 | 482 | no | na | yes | no | no | +++ | | WPR | Cerebrovascular/Stroke | HR 21.7 (1.6-300.5) | 0 | 1 ²³⁸ | 420 | no | na | no | no | no | ++++ | Table 8. 7 Risk of ICU admission in persons with oncological diseases: meta-analysis and confidence in the estimate (GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|---------------|---------------------|--------------------|------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Cancer | OR 1.9 (1-3.9) | 0 | 1 ²²² | 463 | no | na | yes | no | no | +++ | | AMR:
North | Cancer/Active | OR 0.6 (0.18-1.94) | 0 | 1 ²¹⁵ | 436 | no | na | yes | no | no | +++ | | EUR | Cancer/Active | HR 0.81 (0.42-1.56) | 0 | 1141 | 1,157 | no | na | yes | no | no | +++ | | WPR | Cancer | OR 3.13 (0.38-5.88) | 0 | 1 ²⁴² | 641 | no | na | yes | no | no | +++ | Table 9. 1 Risk of intubation in persons with liver and metabolic diseases: meta-analysis and confidence in the estimate (GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|-------------------------
---------------------|--------------------|---|----------|----------------------|-----------------------|---------------------|-------------------|---------------|---------| | AMR:
North | Chronic kidney disease | HR 0.7 (0.44-1.1) | 0.0 | 1 ¹⁷⁰ | 841 | no | na | yes | no | no | +++ | | AMR:
North | Chronic kidney disease | OR range 0.2-2.4 | 72.5 | 5 ^{174,214,215,222,2} 24 | 3,268 | no | yes | yes | no | no | ++ | | AMR:
North | Chronic liver disease | OR range 1.1-2.08 | 48.0 | 2185,215 | 799 | no | yes | yes | no | no | ++ | | AMR:
North | Chronic liver/Cirrhosis | HR 1.16 (0.39-3.5) | 0.0 | 1 ¹⁷⁰ | 841 | no | na | yes | no | no | +++ | | AMR:
North | Chronic liver/Cirrhosis | OR 2.66 (0.4-17.95) | 0.0 | 1 ²¹⁴ | 242 | no | na | yes | no | no | +++ | | AMR:
North | Diabetes | HR 1.12 (0.84-1.49) | 0.0 | 1 ¹⁷⁰ | 841 | no | na | yes | no | no | +++ | | AMR:
North | Diabetes | OR 1.44 (1.25-1.67) | 0.0 | 11 ^{174,178,185,186,} 190,197,207,214,215 ,222,224 | 5,013 | no | no | no | no | no* | ++++ | | AMR:
North | Diabetes | RR 1.2 (0.87-1.7) | 0.0 | 1 ²⁰⁴ | 504 | no | na | yes | yes,
NOS
=4 | no | ++ | | AMR:
North | Hepatitis | HR 0.94 (0.35-2.54) | 0.0 | 1 ¹⁷⁰ | 841 | no | na | yes | no | no | +++ | | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|-----------------------------------|---------------------|--------------------|------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Dyslipidemia or
hyperlipidemia | OR 1.23 (0.81-1.85) | 0.0 | 2185,207 | 563 | no | no | yes | no | no | +++ | | EUR | Diabetes | OR 1.6 (0.44-5.83) | 0.0 | 1 ¹⁶⁵ | 124 | no | na | yes | no | no | +++ | | EUR | Dyslipidemia or
hyperlipidemia | OR 0.68 (0.24-1.97) | 0.0 | 1 ¹⁶⁵ | 124 | no | na | yes | no | no | +++ | | WPR | Diabetes | OR 2.19 (1.76-6.14) | 0.0 | 1 ²⁴² | 641 | no | na | no | no | no | ++++ | *Beggs: tau=0.0545,pval=0.8793; Egger: zval=0.4946,pval=0.6209 AMR, regions of America; AFR, African region; HR, hazard ratio; EMR, Eastern Mediterranean region; EUR, European region; na, not applicable; OR, odds ratio; RR, risk ratio; WPR, Western Pacific region Table 9.2 Risk of intubation in persons with respiratory diseases: meta-analysis and confidence in the estimate (GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|-------------------------|----------------------|--------------------|--------------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Asthma | OR 1.13 (0.82-1.55) | 0 | 1 ²²⁴ | 2,015 | no | na | yes | no | no | +++ | | AMR:
North | COPD | OR 1.13 (0.75-1.7) | 0 | 1 ²²⁴ | 2,015 | no | na | yes | no | no | +++ | | AMR:
North | COPD or asthma | OR 0.67 (0.44-1.02) | 0 | 3 ^{178,214,215} | 892 | no | no | yes | no | no | +++ | | AMR:
North | Obstructive sleep apnea | OR 1.15 (0.4-3.35) | 0 | 1 ²⁰⁷ | 200 | no | na | yes | no | no | +++ | | AMR:
North | Respiratory disease | HR 1.07 (0.77-1.48) | 0 | 1 ¹⁷⁰ | 841 | no | na | yes | no | no | +++ | | AMR:
North | Respiratory disease | OR 1.04 (0.7-1.54) | 0 | 3185,190,197 | 845 | no | no | yes | no | no | +++ | | EUR | COPD | OR 2.52 (0.35-17.81) | 0 | 1155 | 145 | no | na | yes | no | no | +++ | Table 9. 3 Risk of intubation in persons with circulatory diseases: meta-analysis and confidence in the estimate (GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|-------------------------|---------------------|--------------------|------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Arrhythmia | OR 1.06 (0.75-1.48) | 0.0 | 1 ²²⁴ | 2,015 | no | na | yes | no | no | +++ | | AMR:
North | Cardiovascular disease | OR 0.54 (0.28-1.04) | 0.0 | 1 ¹⁹⁷ | 379 | no | na | yes | no | no | +++ | | AMR:
North | Coronary artery disease | HR 0.86 (0.56-1.33) | 0.0 | 1 ¹⁷⁰ | 841 | no | na | yes | no | no | +++ | | AMR:
North | Coronary artery disease | OR 0.89 (0.61-1.28) | 18.1 | 3174,222,224 | 2,590 | no | no | yes | no | no | +++ | | AMR:
North | Heart disease | OR range 0.64-3.41 | 83.5 | 2185,190 | 466 | no | yes | yes | no | no | ++ | | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|-----------------------------|---------------------|--------------------|--|----------|----------------------|-----------------------|---------------------|-------------------|---------------|---------| | AMR:
North | Heart failure | HR 0.81 (0.59-1.11) | 0.0 | 1 ¹⁷⁰ | 841 | no | na | yes | no | no | +++ | | AMR:
North | Heart failure | OR 1.1 (0.84-1.44) | 0.0 | 5 ^{178,214,215,222,2} 24 | 3,370 | no | no | yes | no | no | +++ | | AMR:
North | Hypertension | HR 1.59 (1.1-2.3) | 0.0 | 1 ¹⁷⁰ | 841 | no | na | no | no | no | ++++ | | AMR:
North | Hypertension | OR 0.88 (0.74-1.04) | 0.0 | 9 ^{174,178,185,190,1}
97,214,215,222,224 | 4,327 | no | no | yes | no | no | +++ | | AMR:
North | Hypertension | RR 0.76 (0.48-1.2) | 0.0 | 1 ²⁰⁴ | 504 | no | na | yes | yes,
NOS
=4 | no | ++ | | AMR:
North | Peripheral vascular disease | OR 1.08 (0.69-1.7) | 0.0 | 1 ²²⁴ | 2,015 | no | na | yes | no | no | +++ | | AMR:
North | V.thromboembolism | OR 0.76 (0.44-1.3) | 0.0 | 1 ²²⁴ | 2,015 | no | na | yes | no | no | +++ | | EUR | Hypertension | OR range 0.27-2.29 | 84.2 | 2155,165 | 269 | no | yes | yes | no | no | ++ | | WPR | Hypertension | OR 1.9 (1.48-5.27) | 0.0 | 1 ²⁴² | 641 | no | na | no | no | no | ++++ | Table 9. 4 Risk of intubation in persons with overweight, obesity or underweight: meta-analysis and confidence in the estimate (GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|----------------|----------------------|--------------------|---|----------|----------------------|-----------------------|---------------------|-------------------|---------------|---------| | AMR:
North | Obesity/BMI≥30 | OR 1.54 (1.31-1.82) | 0.0 | 10 ^{174,178,185,186,} 190,195,197,207,215 ,224 | 4,986 | no | no | no | no | yes* | +++ | | AMR:
North | Obesity/BMI≥30 | RR 1.92 (1.49-2.46) | 10.7 | 2 ^{204,218} | 5,422 | no | no | no | no | no | ++++ | | AMR:
North | Obesity/BMI≥40 | OR 2.57 (1.57-4.22) | 6.5 | 2186,222 | 949 | no | no | no | no | no | ++++ | | AMR:
North | Overweight | OR 1.15 (0.79-1.66) | 21.9 | 3 ^{190,215,224} | 2,554 | no | no | yes | no | no | +++ | | AMR:
North | Overweight | RR 2 (1.2-3.3) | 0.0 | 1 ²⁰⁴ | 504 | no | na | no | yes,
NOS
=4 | no | +++ | | AMR:
North | Underweight | OR 0.76 (0.26-2.22) | 0.0 | 1 ²⁰⁷ | 200 | no | na | yes | no | no | +++ | | EUR | Obesity/BMI≥30 | OR 4.93 (1.75-13.88) | 0.0 | 1 ¹⁶⁵ | 124 | no | na | no | no | no | ++++ | | EUR | Overweight | OR 1.69 (0.52-5.48) | 0.0 | 1 ¹⁶⁵ | 124 | no | na | yes | no | no | +++ | *Beggs: tau=0.6,pval=0.0099; Egger: zval=3.3577,pval=8e-04 AMR, regions of America; AFR, African region; HR, hazard ratio; EMR, Eastern Mediterranean region; EUR, European region; na, not applicable; OR, odds ratio; RR, risk ratio; WPR, Western Pacific region Table 9. 5 Risk of intubation in persons with immunodeficiency: meta-analysis and confidence in the estimate (GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|-----------------------------|---------------------|--------------------|------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | HIV | HR 1.05 (0.46-2.4) | 0 | 1 ¹⁷⁰ | 841 | no | na | yes | no | no | +++ | | AMR:
North | Inflammatory bowel disease | HR 0.34 (0.05-2.43) | 0 | 1 ¹⁷⁰ | 841 | no | na | yes | no | no | +++ | | AMR:
North | Immunosuppression | HR 0.96 (0.33-2.8) | 0 | 1 ¹⁷⁰ | 841 | no | na | yes | no | no | +++ | | AMR:
North | Organ transplant recipients | HR 1.03 (0.53-2.04) | 0 | 1 ¹⁷⁰ | 841 | no | na | yes | no | no | +++ | | AMR:
North | Rheumatological disease | HR 1.09 (0.54-2.18) | 0 | 1 ¹⁷⁰ | 841 | no | na | yes | no | no | +++ | AMR, regions of America; HR, hazard ratio; na, not applicable Table 9. 6 Risk of intubation in persons with neurological diseases or mental health disorders: meta-analysis and confidence in the estimate (GRADE) | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|------------------------|---------------------|--------------------|------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Cerebrovascular/Stroke | HR 0.96 (0.57-1.62) | 0 | 1170 | 841 | no | na | yes | no | no | +++ | | AMR:
North | Cerebrovascular/Stroke | OR 0.81 (0.56-1.18) | 0 | 1 ²²⁴ | 2,015 | no | na | yes | no | no | +++ | | AMR:
North | Dementia | OR 0.52 (0.34-0.8) | 0 | 1 ²²⁴ |
2,015 | no | na | no | no | no | ++++ | AMR, regions of America; HR, hazard ratio; na, not applicable; OR, odds ratio $Table \ 9. \ 7 \ Risk \ of intubation \ in \ persons \ with \ oncological \ diseases: \ meta-analysis \ and \ confidence \ in \ the \ estimate \ (GRADE)$ | Region | Condition | Estimate (95% CI) | I ² (%) | Studies | Patients | Indir
ectne
ss | Incon
sisten
cy | Impr
ecisio
n | Bias | Publ.
Bias | Quality | |---------------|---------------|---------------------|--------------------|----------------------|----------|----------------------|-----------------------|---------------------|------|---------------|---------| | AMR:
North | Cancer | OR range 0.82-2.5 | 86.9 | 2 ^{222,224} | 2,478 | no | yes | yes | no | no | ++ | | AMR:
North | Cancer/Active | HR 0.65 (0.33-1.3) | 0.0 | 1 ¹⁷⁰ | 841 | no | na | yes | no | no | +++ | | AMR:
North | Cancer/Active | OR 0.55 (0.15-2.05) | 0.0 | 1 ²¹⁵ | 436 | no | na | yes | no | no | +++ | | WPR | Cancer | OR 2.71 (0.45-5.87) | 0.0 | 1 ²⁴² | 641 | no | na | yes | no | no | +++ | AMR, regions of America; HR, hazard ratio; na, not applicable; OR, odds ratio; WPR, Western Pacific region Figure 4. Ranges of the estimates with considerable between-study heterogeneity for respiratory and liver and metabolic diseases Figure 5. Ranges of the estimates with considerable between-study heterogeneity for circulatory diseases, overweight, obesity, and underweight Figure 6. Ranges of the estimates with considerable between-study heterogeneity for immunodeficiency, oncological disease, neurological and mental health disorders # 2.6. Estimated associations supported by high quality of evidence # Table 10 Estimated associations supported by high quality of evidence (GRADE) presented for each pre-existing condition and outcome across the WHO-regions | Pre- | African | Region | | Regions of A | nerica: North | | R | tegions of Amer | ica: South/Lat | in | | editerranean
gion | | Europea | n Region | | | Western Pa | cific Region | | |---|------------------------|------------------------|---|--|---|------------------------------------|---|------------------------|------------------------|---|------------------------|------------------------|--|--|--|---|---|--|---|------------------------------------| | existing
condition | Hospital
mortality | Case
mortality | Hospitalis
ation | ICU
admission | Hospital
mortality | Case
mortality | Hospitalis
ation | ICU
admission | Hospital
mortality | Case
mortality | ICU
admission | Hospital
mortality | Hospitalis
ation | ICU
admission | Hospital
mortality | Case
mortality | Hospitalis
ation | ICU
admission | Hospital
mortality | Case
mortality | | Chronic
kidney
disease | HR 1.51
(1.2-1.89) | HR 1.92
(1.51-2.45) | - | - | RR 1.33
(1.1-1.61) | HR 1.53
(1.32-1.78) | pOR 2.21
(1.94-2.51)
^{230,233,235} | - | - | OR 1.44
(1.01-2.06) | - | - | - | OR 4.8
(1.83-12.6) | pOR 1.92
(1.57-2.36)
147,153,156,160 | pHR 1.31
(1.21-1.42)
131,159,
OR 1.9
(1.4-2.6) | - | - | pOR 2.65
(1.45-4.84)
^{240,254} | - | | Chronic
liver
disease | - | - | RR 1.3
(1.1-1.6)
²¹⁹ | - | - | RR 3 (1.5-
6) ²¹⁹ | - | - | - | - | - | - | - | - | HR 1.51
(1.21-1.88) | - | - | - | - | - | | Chronic
liver/Cirrh
osis | - | - | - | - | pOR 5.96
(1.29-
27.66)
_{185,214} | - | - | - | - | - | - | - | - | - | HR 2.03
(1.31-3.13) | - | - | - | - | - | | Diabetes | - | HR 2.02
(1.47-2.76) | pOR 2.03
(1.73-2.38)
171,178,191,199
,209,212,224,29 | pOR 1.4
(1.12-1.75)
178,185,190,197
,215,222,
RR 1.13
(1.03-1.24) | pRR 1.18
(1.06-1.32)
192,204,221 | HR 1.21
(1.06-1.4) | - | OR 1.87
(1.41-4.26) | - | OR 1.5
(1.13-1.98) | OR 5.49
(3.13-9.65) | OR 1.64
(1.24-2.18) | pOR 1.77
(1.52-2.07)
151,156,166 | pHR 1.45
(1.1-1.91)
141.160,
pOR 1.83
(1.12-2.98)
124.160 | pOR 1.26
(1.02-1.56)
132,147,153,156
,160 | pHR 1.35
(1.18-1.54)
^{131,159} ,
OR 1.6
(1.3-2) ¹⁵⁶ | - | HR 4.7
(1.6-14.1) | - | - | | Dyslipide
mia or
hyperlipid
emia | - | - | - | - | RR 0.75
(0.57-0.98) | RR 1.47
(1.02-2.11) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Asthma | - | - | - | - | - | - | OR 0.73
(0.65-0.81) | - | | - | - | - | - | - | OR 0.42
(0.19-0.91) | - | - | - | - | - | | COPD | - | - | pOR 1.72
(1.23-2.4)
171,199,212,224 | - | pHR 1.23
(1.03-1.47)
^{205,217,226} ,
RR 1.41
(1.06-1.88)
²²¹ | - | pOR 1.47
(1.3-1.67)
^{230,233} | - | HR 1.12
(1.07-1.18) | pHR 1.49
(1.22-1.84)
^{229,236} , OR
1.68 (1.22-
2.31) ²³⁰ | - | - | - | - | HR 1.15
(1.03-1.29) | - | - | OR 3.27
(1.09-7.63) | pHR 1.74
(1.03-2.95)
258,264,275,
pOR 2.22
(1.55-3.19)
240,242,254,273 | pHR 1.43
(1.01-2.03)
247,251 | | Interstitial
lung
disease | - | - | - | - | HR 2.17
(1.76-2.69)
²⁰⁵ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Obstructiv
e sleep
apnea | - | - | RR 1.23
(1.01-1.49) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Respirator
y disease | HR 0.68
(0.53-0.86) | - | - | - | pOR 1.69
(1.04-2.74)
185,197,210,
RR 1.31
(1.13-1.52) | pOR 1.24
(1.08-1.42)
184,290 | OR 1.46
(1.12-1.9) | - | HR 1.21
(1.06-1.38) | - | - | - | - | - | pHR 1.17
(1.09-1.26)
139-141,157 | OR 1.4
(1.1-1.8) | - | HR 6.2
(1.9-20.1)
²³⁸ | - | - | | Tuberculos is | HR 1.3
(1.05-1.63) | HR 1.57
(1.25-1.97) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | RR 1.2
(1.04-1.38)
²⁶⁰ | - | RR 2.25
(1.35-3.75)
260 | RR 2.17
(1.4-3.37)
260 | | Pre- | African | Region | | Regions of A | nerica: North | | R | Regions of Ame | rica: South/Lat | in | | editerranean
gion | | Europea | n Region | | | Western Pa | cific Region | | |--------------------------------|-----------------------|-------------------|---|---|---|--|---------------------|------------------------|--|--|------------------------|-----------------------|---|------------------------------------|------------------------------------|---|---------------------|--|---|-------------------| | existing
condition | Hospital
mortality | Case
mortality | Hospitalis
ation | ICU
admission | Hospital
mortality | Case
mortality | Hospitalis
ation | ICU
admission | Hospital
mortality | Case
mortality | ICU
admission | Hospital
mortality | Hospitalis
ation | ICU
admission | Hospital
mortality | Case
mortality | Hospitalis
ation | ICU
admission | Hospital
mortality | Case
mortality | | Arrhythmi
a | - | - | OR 1.49
(1.03-2.14) | - | pOR 1.29
(1.02-1.62)
188,224 | - | - | - | - | - | - | - | HR 1.5
(1.2-1.9)
159,
pOR 1.39
(1.17-1.65)
156,166 | - | pOR 1.37
(1.07-1.74)
153,156 | HR 1.8
(1.3-2.5)
¹⁵⁹ ,
OR 1.6
(1.2-2) ¹⁵⁶ | - | - | - | - | | Cardiovasc
ular
disease | - | - | - | - | RR 1.28
(1.03-1.58) | - | - | - | - | - | - | - | - | - | pHR 1.9
(1.19-3.01)
124,157 | - | - | - | pHR 1.95
(1.46-2.61)
241,245,249,257
,258,264,275 | - | | Coronary
artery
disease | - | - | - | - | pOR 1.19
(1.03-1.38)
188,193,195,207
,216,224,
pHR 1.17
(1.07-1.28)
170,209,226 | - | - | - | - | - | - | - | OR 1.4
(1.2-1.7) | - | - | HR 1.7
(1.2-2.5) | - | - | - | - | | Heart
disease | - | - | - | - | - | - | - | - | - | - | - | - | HR 1.1
(1.05-1.16) | - | pHR 1.2
(1.12-1.28)
131,140 | - | - | - | pOR 4.54
(1.47-
14.01)
256,263 | - | | Heart
failure | - | - | - | - | pOR 1.31
(1.08-1.6)
188,193,195,207
,214-216,224 | OR 1.42
(1.21-1.67) | - | - | - | - | - | - | HR 1.6
(1.2-2.1)
159,
OR 2.6 (2-
3.4) 156 | - | pOR 1.37
(1.02-1.84)
153,156 | HR 2.3
(1.6-3.2)
¹⁵⁹ ,
OR 1.8
(1.3-2.4) | - | - | HR 3.3
(1.33-8.19)
²⁴⁶ | - | | Hypertensi
on | - | - | - | - | pHR 0.88
(0.8-0.95)
170,200,205,209 | - | - | OR 1.77
(1.37-2.29) | HR 1.08
(1.05-1.11)
²³⁴ | HR 1.38
(1.09-1.75)
²³⁶ | - | - | pOR 1.69
(1.51-1.89)
151,156,166 | pHR 1.37
(1.02-1.83)
141,160 | - | OR 1.3
(1.1-1.6) | - | HR 4.6
(1.8-11.6)
²³⁸ | pHR 1.85
(1.48-2.3)
245,246,252,257
,265,268,272,27
5 | - | | Infarction | - | - | - | - | - | OR
1.97
(1.64-2.35)
¹⁸⁴ ,
RR 1.66
(1.04-2.64)
²²³ | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Obesity/B
MI>30 | - | - | pOR 1.63
(1.43-1.84)
178,181,191,199
,209,211,224,
pRR 1.12
(1.04-1.21)
172,218 | pOR 1.46
(1.06-2.02)
178,185,190,197
,215,
RR 1.31
(1.16-1.47) | - | HR 1.42
(1.19-1.7) | - | OR 1.43
(1.11-1.83) | - | OR 1.74
(1.35-2.26) | OR 2.27
(1.15-4.47) | - | pHR 1.59
(1.52-1.66) | HR 4.22
(3.02-5.91) | - | OR 1.5
(1.1-2) 156 | - | - | - | - | | Obesity/B
MI>40 | - | - | OR 2.45
(1.78-3.36) | OR 2.0
(1.4-3.6) | pOR 1.7
(1.26-2.29)
^{193,216} ,
pHR 1.41
(1.03-1.93)
^{180,209} | RR 3.29
(2.07-5.22)
223 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Overweigh
t | - | - | pOR 1.33
(1.16-1.53)
181,209,224 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | Cerebrova
scular/Stro
ke | - | - | OR 2.25
(1.42-3.58)
224 | - | - | - | - | - | - | - | - | - | pOR 1.3
(1.08-1.56)
156,166 | - | HR 2.12
(1.29-3.47) | OR 1.4
(1.1-1.8) | - | - | - | - | | Pre- | African | Region | | Regions of A | merica: North | | R | Regions of Ame | rica: South/Lat | in | | editerranean
gion | | Europea | n Region | | | Western Pa | cific Region | | |-----------------------------------|------------------------|-----------------------|-----------------------|------------------------|--|--|------------------------|------------------|------------------------------------|---|------------------|-----------------------|------------------------------------|------------------|--|---|---------------------|------------------|--|-------------------| | existing
condition | Hospital
mortality | Case
mortality | Hospitalis
ation | ICU
admission | Hospital
mortality | Case
mortality | Hospitalis
ation | ICU
admission | Hospital
mortality | Case
mortality | ICU
admission | Hospital
mortality | Hospitalis
ation | ICU
admission | Hospital
mortality | Case
mortality | Hospitalis
ation | ICU
admission | Hospital
mortality | Case
mortality | | Dementia | - | - | OR 3.6
(2.12-6.09) | - | OR 2.03
(1.46-2.83) | OR 1.29
(1.07-1.56)
¹⁸⁴ ,
HR 1.47
(1.21-1.78) | - | - | - | - | - | - | - | - | - | pHR 1.92
(1.77-2.08)
131,159,
OR 2 (1.5-
2.6) 156 | - | - | HR 7.7
(1.5-39.61) | - | | Neurologic
al disease | - | - | - | - | RR 1.25
(1.04-1.5) | - | - | - | HR 1.34
(1.16-1.54)
228 | HR 3.9
(1.9-7.8)
²³⁷ | - | - | - | - | pHR 1.18
(1.08-1.28)
127,140 | - | - | - | - | - | | Psychiatric
disorder | - | - | - | - | - | - | - | - | - | - | - | - | pOR 1.72
(1.05-2.84)
151,156 | - | OR 2.9
(1.3-6.6)
156 | OR 2.5
(1.2-5.1) | - | - | - | - | | Autoimmu
ne
condition | - | - | - | - | - | - | - | - | - | - | - | - | HR 1.08
(1.01-1.17) | - | HR 1.19
(1.06-1.33) | - | - | - | - | - | | HIV | HR 1.45
(1.14-1.84) | HR 1.7
(1.32-2.18) | - | - | OR 0.07
(0.03-0.52) | - | - | - | - | - | - | - | - | - | HR 1.5
(1.02-2.22) | - | - | - | - | - | | Immunosu
ppression | - | - | - | RR 1.29
(1.13-1.47) | OR 3.6
(1.52-8.47)
²¹⁶ ,
RR 1.39
(1.13-1.7) | - | OR 1.85
(1.59-2.15) | - | pHR 1.09
(1.03-1.16)
228,234 | OR 1.7
(1.13-2.55)
²³⁰ | - | - | - | - | OR 2.11
(1.08-4.09) | - | - | - | - | - | | Organ
transplant
recipients | - | - | - | - | - | RR 6.54
(2.66-
16.12) ²²³ | - | - | - | - | - | - | OR 3.4
(1.7-6.6) | - | OR 4.2
(1.6-11.4) | OR 3.2
(1.3-8.4) | - | - | - | - | | Rheumatol
ogical
disease | - | - | - | - | - | - | - | - | - | - | - | - | OR 1.5
(1.1-1.9) | - | - | - | - | - | - | - | | Cancer | - | - | - | - | pHR 1.19
(1.06-1.33)
200,205,209,226 | - | - | - | - | - | - | - | - | - | pHR 1.2
(1.11-1.3)
131,139,140 | pHR 1.25
(1.15-1.36)
131,159 | - | - | pOR 3.23
(2.33-4.48)
240,242,254,255 | - | | Cancer/Ac tive | - | - | - | - | - | - | - | - | - | - | - | - | - | - | pHR 1.44
(1.16-1.79)
127,137,141,
OR 4.68
(1.47-
14.88) 126 | - | - | - | - | - | | Cancer/He
matologica | - | - | - | - | - | - | - | - | - | - | - | - | - | - | HR 1.74
(1.28-2.37) | - | - | - | - | - | | Cancer/Sol id | - | - | - | - | - | OR 1.7
(1.19-2.43) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | HR, hazard ratio; OR, odds ratio; pHR; pooled hazard ratio; pOR, pooled odds ratio; RR, risk ratio # 2.7. Age-stratified estimates Table 11 Age-stratified estimates extracted from single studies (as reported by primary studies) | Pre-existing condition | Outcome | Age group | Estimate | Region | Sample
size | Study | |-------------------------|--------------------|-----------|------------------------|---------------------------------|----------------|--------------------------------------| | Coronary artery disease | Hospital mortality | <=50 | OR 0.6
(0.2-2.1) | Regions of America:
North | 572 | Klang et al. 193 | | Coronary artery disease | Hospital mortality | >50 | OR 1.3
(1.1-1.6) | Regions of America:
North | 2,834 | Klang et al. 193 | | Cardiovascular disease | Hospital mortality | <65 | OR 1.14
(0.6-2.16) | Eastern
Mediterranean Region | 2,957 | Rastad et al. ¹²³ | | Cardiovascular disease | Hospital mortality | >=65 | OR 1.2
(0.8-1.78) | Eastern
Mediterranean Region | 2,957 | Rastad et al. 123 | | Heart failure | Hospital mortality | <=50 | OR 4.0
(1.6-10.4) | Regions of America:
North | 572 | Klang et al. 193 | | Heart failure | Hospital mortality | <65 | HR 1.38
(0.56-3.37) | European Region | 1,761 | Di Castelnuovo et al. ¹³⁹ | | Heart failure | Hospital mortality | >50 | OR 1.0
(0.8-1.3) | Regions of America:
North | 2,834 | Klang et al. 193 | | Heart failure | Hospital mortality | 65-74 | HR 1.12
(0.66-1.92) | European Region | 808 | Di Castelnuovo et al. ¹³⁹ | | Heart failure | Hospital mortality | >=75 | HR 0.95
(0.74-1.23) | European Region | 1,315 | Di Castelnuovo et al. ¹³⁹ | | Infarction | Hospital mortality | <65 | HR 1.19
(0.43-3.28) | European Region | 1,761 | Di Castelnuovo et al. ¹³⁹ | | Infarction | Hospital mortality | 65-74 | HR 1.28
(0.75-2.2) | European Region | 808 | Di Castelnuovo et al. ¹³⁹ | | Infarction | Hospital mortality | >=75 | HR 1.06
(0.82-1.39) | European Region | 1,315 | Di Castelnuovo et al. ¹³⁹ | | Hypertension | Intubation | 45-64 | RR 0.91
(0.4-2.0) | Regions of America:
North | 188 | Nakeshbandi et al. ²⁰⁴ | | Hypertension | Intubation | >=65 | RR 0.69
(0.38-1.3) | Regions of America:
North | 316 | Nakeshbandi et al. ²⁰⁴ | | Hypertension | Hospital mortality | <=50 | OR 0.5
(0.2-1.1) | Regions of America:
North | 572 | Klang et al. 193 | | Hypertension | Hospital mortality | 45-64 | RR 0.73
(0.34-1.5) | Regions of America:
North | 188 | Nakeshbandi et al. | | Hypertension | Hospital mortality | <65 | HR 0.85
(0.54-1.33) | European Region | 1,761 | Di Castelnuovo et al. ¹³⁹ | | Hypertension | Hospital mortality | >50 | OR 1.1
(0.9-1.3) | Regions of America:
North | 2,834 | Klang et al. 193 | | Hypertension | Hospital mortality | 65-74 | HR 0.92
(0.61-1.39) | European Region | 808 | Di Castelnuovo et al. ¹³⁹ | | Hypertension | Hospital mortality | >=65 | RR 0.81
(0.64-1.0) | Regions of America:
North | 316 | Nakeshbandi et al. ²⁰⁴ | | Hypertension | Hospital mortality | >=75 | HR 0.87
(0.67-1.14) | European Region | 1,315 | Di Castelnuovo et al. ¹³⁹ | | Pre-existing condition | Outcome | Age group | Estimate | Region | Sample
size | Study | |------------------------|--------------------|-----------|-----------------------------|------------------------------|----------------|--------------------------------------| | Chronic kidney disease | Hospital mortality | <=50 | OR 3.3
(1.4-7.7) | Regions of America:
North | 572 | Klang et al. 193 | | Chronic kidney disease | Hospital mortality | >50 | OR 1.7
(1.4-2.1) | Regions of America:
North | 2,834 | Klang et al. 193 | | CKD/eGFR60-89 | Hospital mortality | <65 | HR 1.76
(0.94-3.32) | European Region | 1,761 | Di Castelnuovo et al. ¹³⁹ | | CKD/eGFR60-89 | Hospital mortality | 65-74 | HR 1.49
(0.86-2.59) | European Region | 808 | Di Castelnuovo et al. ¹³⁹ | | CKD/eGFR60-89 | Hospital mortality | >=75 | HR 1.1
(0.61-2.01) | European Region | 1,315 | Di Castelnuovo et al. ¹³⁹ | | CKD/eGFR59-45 | Hospital mortality | <65 | HR 3.3
(1.46-7.46) | European Region | 1,761 | Di Castelnuovo et al. ¹³⁹ | | CKD/eGFR59-45 | Hospital mortality | 65-74 | HR 1.93
(1.11-3.37) | European Region | 808 | Di Castelnuovo et al. ¹³⁹ | | CKD/eGFR59-45 | Hospital mortality | >=75 | HR 1.84
(1.02-3.32) | European Region | 1,315 | Di Castelnuovo et al. ¹³⁹ | | CKD/eGFR44-30 | Hospital mortality | <65 | HR 3.24
(1.41-7.45) | European Region | 1,761 | Di Castelnuovo et al. ¹³⁹ | | CKD/eGFR44-30 | Hospital mortality | 65-74 | HR 3.33
(1.78-6.23) | European Region | 808 | Di Castelnuovo et al. ¹³⁹ | | CKD/eGFR44-30 | Hospital mortality | >=75 | HR 2.36
(1.38-4.02) | European Region | 1,315 | Di Castelnuovo et al. ¹³⁹ | | CKD/eGFR15-29 | Hospital mortality | <65 | HR 13.89
(3.09-62.5) | European Region | 1,761 | Di Castelnuovo et al. ¹³⁹ | | CKD/eGFR15-29 | Hospital mortality | 65-74 | HR 4.86
(2.18-
10.82) | European Region | 808 | Di Castelnuovo et al. ¹³⁹ | | CKD/eGFR15-29 | Hospital mortality | >=75 | HR 3 (1.62-
5.54) | European Region | 1,315 | Di Castelnuovo et al. ¹³⁹ | | CKD/eGFR<15
 Hospital mortality | <65 | HR 6.65
(1.66-
26.73) | European Region | 1,761 | Di Castelnuovo et al. ¹³⁹ | | CKD/eGFR<15 | Hospital mortality | 65-74 | HR 4.77
(1.63-13.9) | European Region | 808 | Di Castelnuovo et al. ¹³⁹ | | CKD/eGFR<15 | Hospital mortality | >=75 | HR 3.65
(1.92-6.96) | European Region | 1,315 | Di Castelnuovo et al. ¹³⁹ | | Diabetes | Intubation | 45-64 | RR 1.2
(0.69-2.1) | Regions of America:
North | 188 | Nakeshbandi et al. ²⁰⁴ | | Diabetes | Intubation | >=65 | RR 1.2
(0.79-1.9) | Regions of America:
North | 316 | Nakeshbandi et al. ²⁰⁴ | | Diabetes | Hospital mortality | <=50 | OR 1.3
(0.7-2.6) | Regions of America:
North | 572 | Klang et al. 193 | | Diabetes | Hospital mortality | 45-64 | RR 1.6
(0.92-2.8) | Regions of America:
North | 188 | Nakeshbandi et al. ²⁰⁴ | | Diabetes | Hospital mortality | <65 | HR 2.0
(1.15-3.5) | European Region | 1,761 | Di Castelnuovo et al. ¹³⁹ | | Pre-existing condition | Outcome | Age group | Estimate | Region | Sample
size | Study | |------------------------|--------------------|-----------|------------------------|------------------------------------|----------------|--------------------------------------| | Diabetes | Hospital mortality | <65 | OR 1.7
(0.97-2.97) | Eastern
Mediterranean Region | 2,957 | Rastad et al. ¹²³ | | Diabetes | Hospital mortality | >50 | OR 1.4
(1.2-1.7) | Regions of America:
North | 2,834 | Klang et al. 193 | | Diabetes | Hospital mortality | 65-74 | HR 0.86
(0.59-1.25) | European Region | 808 | Di Castelnuovo et al. ¹³⁹ | | Diabetes | Hospital mortality | >=65 | RR 1.0
(0.84-1.2) | Regions of America:
North | 316 | Nakeshbandi et al. ²⁰⁴ | | Diabetes | Hospital mortality | >=65 | OR 1.6
(1.01-2.52) | Eastern
Mediterranean Region | 2,957 | Rastad et al. 123 | | Diabetes | Hospital mortality | >=75 | HR 0.96
(0.78-1.19) | European Region | 1,315 | Di Castelnuovo et al. ¹³⁹ | | Diabetes | Case mortality | < 40 | HR 2.86
(2.19-3.76) | Regions of America:
South Latin | 51,633 | Bello-Chavolla et al. ²²⁹ | | Respiratory disease | Hospital mortality | <65 | HR 1.09
(0.41-2.88) | European Region | 1,761 | Di Castelnuovo et al. ¹³⁹ | | Respiratory disease | Hospital mortality | 65-74 | HR 1.76
(1.16-2.67) | European Region | 808 | Di Castelnuovo et al. ¹³⁹ | | Respiratory disease | Hospital mortality | >=75 | HR 1.11
(0.89-1.39) | European Region | 1,315 | Di Castelnuovo et al. ¹³⁹ | | Asthma | Hospitalisation | <=50 | OR 0.98
(0.58-1.66) | Regions of America:
North | 502 | Mahdavinia et al. ¹⁹⁶ | | Asthma | Hospitalisation | 50-65 | OR 1.17
(0.62-2.19) | Regions of America:
North | 278 | Mahdavinia et al. ¹⁹⁶ | | Asthma | Hospitalisation | >=65 | OR 1.37
(0.63-3.01) | Regions of America:
North | 155 | Mahdavinia et al. ¹⁹⁶ | | Asthma | Intubation | <=50 | OR 1.04
(0.34-2.62) | Regions of America:
North | 502 | Mahdavinia et al. ¹⁹⁶ | | Asthma | Intubation | 50-65 | OR 1.24
(1.0-1.5) | Regions of America:
North | 278 | Mahdavinia et al. ¹⁹⁶ | | Asthma | Intubation | >=65 | OR 1.14
(0.4-3.25) | Regions of America:
North | 155 | Mahdavinia et al. ¹⁹⁶ | | Asthma | Case mortality | 50-65 | OR 1.19
(0.21-6.67) | Regions of America:
North | 278 | Mahdavinia et al. ¹⁹⁶ | | Cancer | Intubation | <=50 | RR 1.48
(0.37-5.9) | Regions of America:
North | 2,088 | Miyashita. H et al. ²⁰² | | Cancer | Intubation | 50-65 | RR 1.31
(0.66-2.6) | Regions of America:
North | 1,641 | Miyashita. H et al. ²⁰² | | Cancer | Intubation | 65-80 | RR 1.76
(1.15-2.7) | Regions of America:
North | 1,134 | Miyashita. H et al. ²⁰² | | Cancer | Intubation | >80 | RR 1.17
(0.49-2.83) | Regions of America:
North | 625 | Miyashita. H et al. ²⁰² | | Cancer | Hospital mortality | <=50 | OR 2.5
(1.0-6.5) | Regions of America:
North | 572 | Klang et al. 193 | | Cancer | Hospital mortality | <65 | HR 4.76
(2.46-9.21) | European Region | 1,761 | Di Castelnuovo et al. ¹³⁹ | | Pre-existing condition | Outcome | Age group | Estimate | Region | Sample size | Study | |------------------------|--------------------|-----------|------------------------|------------------------------|-------------|--------------------------------------| | Cancer | Hospital mortality | >50 | OR 1.0
(0.8-1.2) | Regions of America:
North | 2,834 | Klang et al. ¹⁹³ | | Cancer | Hospital mortality | 65-74 | HR 1.65
(0.95-2.86) | European Region | 808 | Di Castelnuovo et al. ¹³⁹ | | Cancer | Hospital mortality | >=65 | HR 1.12
(0.56-2.24) | Western Pacific
Region | 660 | Li.Q et al. ²⁵³ | | Cancer | Hospital mortality | >=75 | HR 1.1
(0.86-1.4) | European Region | 1,315 | Di Castelnuovo et al. ¹³⁹ | | Cancer | Case mortality | 50-65 | RR 0.63
(0.24-1.68) | Regions of America:
North | 1,641 | Miyashita. H et al. ²⁰² | | Cancer | Case mortality | 65-80 | RR 0.72
(0.44-1.19) | Regions of America:
North | 1,134 | Miyashita. H et al. ²⁰² | | Cancer | Case mortality | >=65 | RR 5.01
(1.55-16.2) | Regions of America:
North | 2,088 | Miyashita. H et al. ²⁰² | | Cancer | Case mortality | >80 | RR 0.94
(0.6-1.48) | Regions of America:
North | 625 | Miyashita. H et al. ²⁰² | | HIV | Intubation | <=50 | RR 2.97
(1.29-6.84) | Regions of America:
North | 137 | Miyashita. H et al. ²⁰¹ | | HIV | Intubation | 50-65 | RR 1.33
(0.74-2.42) | Regions of America:
North | 234 | Miyashita. H et al. ²⁰¹ | | HIV | Intubation | >=65 | RR 0.86
(0.34-2.19) | Regions of America:
North | 381 | Miyashita. H et al. ²⁰¹ | | HIV | ICU | <=50 | RR 1.6
(0.81-3.14) | Regions of America:
North | 351 | Miyashita. H et al. ²⁰¹ | | HIV | ICU | 50-65 | RR 1.08
(0.76-1.54) | Regions of America:
North | 660 | Miyashita. H et al. ²⁰¹ | | HIV | ICU | >=65 | RR 0.5
(0.24-1.06) | Regions of America:
North | 971 | Miyashita. H et al. ²⁰¹ | | HIV | Case mortality | <=50 | RR 4.36
(1.43-13.3) | Regions of America:
North | 57 | Miyashita. H et al. ²⁰¹ | | HIV | Case mortality | 50-65 | RR 1.4
(0.82-2.38) | Regions of America:
North | 269 | Miyashita. H et al. ²⁰¹ | | HIV | Case mortality | >=65 | RR 0.7
(0.38-1.31) | Regions of America:
North | 932 | Miyashita. H et al. ²⁰¹ | | Dementia | Hospitalisation | 60-79 | RR 1.09
(0.86-1.4) | Regions of America:
North | 514 | Miyashita. S et al. ²⁰³ | | Dementia | Hospitalisation | >80 | RR 1.15
(1.02-1.29) | Regions of America:
North | 514 | Miyashita. S et al. ²⁰³ | | Dementia | Intubation | >80 | RR 0.54
(0.2-1.46) | Regions of America:
North | 514 | Miyashita. S et al. ²⁰³ | | Dementia | ICU | 60-79 | RR 1.03
(0.59-1.8) | Regions of America:
North | 514 | Miyashita. S et al. ²⁰³ | | Dementia | ICU | >80 | RR 0.96
(0.61-1.52) | Regions of America:
North | 514 | Miyashita. S et al. ²⁰³ | | Dementia | Case mortality | 60-79 | RR 2.3
(1.41-3.76) | Regions of America:
North | 514 | Miyashita. S et al. ²⁰³ | | Pre-existing condition | Outcome | Age group | Estimate | Region | Sample
size | Study | |------------------------|--------------------|-----------|------------------------|------------------------------|----------------|--------------------------------------| | Dementia | Case mortality | >80 | RR 1.21
(0.88-1.64) | Regions of America:
North | 514 | Miyashita. S et al. ²⁰³ | | Overweight | Intubation | 45-64 | RR 2.3
(0.72-7.1) | Regions of America:
North | 188 | Nakeshbandi et al. ²⁰⁴ | | Overweight | Intubation | >=65 | RR 1.8
(0.97-3.2) | Regions of America:
North | 316 | Nakeshbandi et al. ²⁰⁴ | | Overweight | Hospital mortality | 45-64 | RR 1.05
(0.44-2.5) | Regions of America:
North | 188 | Nakeshbandi et al. ²⁰⁴ | | Overweight | Hospital mortality | >=65 | RR 1.5
(1.2-2.0) | Regions of America:
North | 316 | Nakeshbandi et al. ²⁰⁴ | | Obesity/BMI>30 | Intubation | 45-64 | RR 3.0
(1.1-8.0) | Regions of America:
North | 188 | Nakeshbandi et al. ²⁰⁴ | | Obesity/BMI>30 | Intubation | >=65 | RR 2.1
(1.1-3.8) | Regions of America:
North | 316 | Nakeshbandi et al. ²⁰⁴ | | Obesity/BMI>30 | Hospital mortality | <=45 | OR 1.35
(1.07-1.7) | Western Pacific
Region | 53 | Zhang.F et al. ²⁷⁰ | | Obesity/BMI>30 | Hospital mortality | <=50 | OR 1.1
(0.5-2.3) | Regions of America:
North | 572 | Klang et al. 193 | | Obesity/BMI>30 | Hospital mortality | 45-64 | RR 1.5
(0.77-2.9) | Regions of America:
North | 188 | Nakeshbandi et al. ²⁰⁴ | | Obesity/BMI>30 | Hospital mortality | <65 | HR 1.36
(0.75-2.46) | European Region | 1,761 | Di Castelnuovo et al. ¹³⁹ | | Obesity/BMI>30 | Hospital mortality | >50 | OR 1.1
(0.9-1.3) | Regions of America:
North | 2,834 | Klang et al. 193 | | Obesity/BMI>30 | Hospital mortality | 65-74 | HR 1.5
(0.92-2.45) | European Region | 808 | Di Castelnuovo et al. ¹³⁹ | | Obesity/BMI>30 | Hospital mortality | >=65 | RR 1.3
(0.94-1.7) | Regions of America:
North | 316 | Nakeshbandi et al. ²⁰⁴ | | Obesity/BMI>30 | Hospital mortality | >=75 | HR 1.05
(0.73-1.52) | European Region | 1,315 | Di Castelnuovo et al. ¹³⁹ | | Obesity/BMI>40 | Hospital mortality | <=50 | OR 5.1
(2.3-11.1) | Regions of America:
North | 572 | Klang et al. 193 | | Obesity/BMI>40 | Hospital mortality | >50 | OR 1.6
(1.2-2.3) | Regions of America:
North | 2,834 | Klang et al. 193 | | Hyperlipidemia | Hospital mortality | <=50 | OR 0.8
(0.3-2.1) | Regions of America:
North | 572 | Klang et al. 193 | | Hyperlipidemia | Hospital mortality | >50 | OR 1.00
(0.8-1.2) | Regions of America:
North | 2,834 | Klang et al. 193 | CKD, chronic kidney disease; eGFR, Estimated glomerular filtration rate; HR, hazard ratio; OR, odds ratio; RR, risk ratio #### 2.8. Summary of evidence for specific population groups Twenty studies 128,133,138,144,149,150,152,154,161,168,198,208,213,227,257,271,272,278-280 in our pool selected populations based on a
pre-existing condition and therefore, could not be included in the meta-analysis. Of those, 12 studies ^{149,150,152,154,161,168,198,213,271,278-280} included patients with cancer and estimated risk factors for the COVID-19 outcomes considered in this review. Among these twelve studies, seven studies included cancer patients, ^{150,154,161,198,213,271,279} others selected groups of cancer patients: two studies focused cancer patients receiving active treatment ^{149,168}, and one each, patients with haematological malignancy ¹⁵², patients with chronic lymphocytic leukemia ²⁸⁰, and patients with thoracic malignancies ²⁷⁸. Other specific populations are patients with IBD¹²⁸, hypertensive patients^{138,272}, patients with diabetes ^{133,257}, hemodialysis patients¹⁴⁴, intubated patients²²⁷, and patients who receive anticoagulants²⁰⁸. In this section, we report only statistically significant risk estimates. #### Patients with cancer Seven studies included patients with cancer who were tested positive for SARS-CoV-2. Pinato et al.¹⁵⁴ estimated an increased risk for death among cancer patients who had additionally two and more other concurrent diseases (HR 1.47 (CI 1.13-1.92)) or who had active malignancy (HR 1.81 (CI 1.35-2.44)) compared with patients with cancer in remission (or no measurable disease). Evidence provided by Kuderer et al.²⁷⁹ also shows an increased risk of death with an increasing number of comorbidities in cancer patients (OR 4.5 (1.33-15.28) - OR 5.04 (1.42-17.93)). However, the evidence is not consistent for >4 comorbidities. Considerably high risk for death was reported in cancer patients with progressive disease comparing with those in remission (OR 5.2 (2.77-9.77)). Others indicated that among the patients with cancer and COVID-19, the patients with haematologic malignancy at higher risk for hospitalisation (OR 2.49 (1.35-4.67))²¹³ and death (OR 2.25 (1.13-4.57))¹⁵⁰. Among the types of hematologic cancer, SARS-CoV-2-positive patients with leukaemia had a higher risk for mortality (OR 2.25 (1.13–4.57)) (compared with patients with non-colorectal cancer of digestive organs)¹⁵⁰. There was no significant association with mortality for other types of hematologic cancer in this study. Among the patients with hematologic malignancy, Passamonti et al.¹⁵² reported an increased risk for death in patients with progressive status (OR 2.1 (CI 1.41-3.12)), acute myeloid leukaemia (OR 3.49 (CI 1.56-7.81)), indolent lymphomas (OR 2.19 (CI 1.07-4.48)), aggressive lymphomas (OR 2.56 (CI 1.34-4.89)), and plasma cell neoplasms (OR 2.48 (CI 1.31-4.69)). Among comorbidities, asthma was associated with death (HR 2.5 (1.1-5.8)) in patients with chronic lymphocytic leukaemia²⁸⁰. ## Patients with Inflammatory Bowel Disease (IBD) Bezzio et al. 128 reported an increased risk of case mortality among IBD patients with a Charlson Comorbidity Index Score>1 (OR 16.66 (1.8-153.9)) or those who had any IBD activity (OR 8.45 (1.26-56.56)). ### **Patients with Hypertension** Conversano et al. ¹³⁸ suggested an increased risk of in-hospital mortality for SARS-CoV-2-positive patients suffering from hypertension with the pre-existing condition chronic heart failure (OR2.8 (1.1-6.9)). #### **Hemodialysis patients** Goicoechea et al.¹⁴⁴ reported an increased risk of in-hospital mortality for SARS-CoV-2-positive hemodialysis patients with longer dialysis vintage per month on hemodialysis (OR 1.008 (1.001-1.015)). #### Patients with diabetes Shi Q et al.²⁵⁷ found that the risk for in-hospital mortality was increased for SARS-CoV-2-positive diabetes patients with the pre-existing condition hypertension (OR 3.10 (1.14-8.44)). ## 2.9. Risk of bias evaluation Table 12 Results of risk of bias evaluation with the Newcastle-Ottawa Scale (NOS) (n=17) | Study | Selection 1 representativeness of the exposed cohort | Selection 2
selection of the
non exposed
cohort | Selection 3
ascertainment of
exposure | Selection 4 demonstration that outcome of interest was not present at start of study meant is not death but the disease incident | Comparability 1
on the basis of
the design study
controls for | Outcome 1
assessment of
outcome | Outcome 2
follow up long
enough for
outcomes to
occur | Outcome 3
adequacy of
follow up of
cohorts | TOT
AL | |-----------------------------------|--|---|---|--|---|---|---|--|-----------| | Rossi, A;
Italy ¹⁵⁸ | 1b (1 point): somewhat representative since patients were consecutively included into study (ICU admission); but single center | 2a (1 point):
drawn from the
same community
as the exposed
cohort | 3a (1point):
secure record of
the exposure | 4a (1 point): no
doubt about
temporal order
between exposure
and outcome | la (1 point): study controls for age, sex, smoking status, comorbidities (obesity = variable of interest, coronary heart disease, CHF, HTN, DM, COPD, chronic renal failure (CKD or reduced renal function?), Immun, immunodeficienc y or immunosuppresse d state and CANC) | 1b (1point):
record linkage
(registry data) | 2a (1 point):
follow up
adequate to
determine death
following
COVID-19 (28
day) | 3a (1 point):
complete follow
up | 8 | | Bellan;
Italy ¹²⁶ | 1b (1 point): somewhat representative of the average COVID-19 patient admitted to hospital, since these patients were all from Northern Italy and from three centers only; only 486 out of 1697 had complete data available for the analysis, however missing at random is assumed; 79 out of 486 were still in hospital at the end of the observation period; proportion of males / age seems a bit high in comparison to other studies | 2a (1 point):
drawn from the
same community
as the exposed
cohort | 3a (1 point):
secure record of
the exposure | 4a (1 point): no
doubt about
temporal order
between exposure
and outcome | 1a (1point): study
controls for age,
CANCact,
obesity, smoking | 1b (1 point):
record linkage | 2a (1 point):
follow up
adequate to
determine death
following
COVID-19 | 3b (1 point):
subjects lost to
follow up unlikely
to introduce bias | 8 | | Study | Selection 1 representativeness of the exposed cohort | Selection 2
selection of the
non exposed
cohort | Selection 3
ascertainment of
exposure | Selection 4 demonstration that outcome of interest was not present at start of study meant is not death but the disease incident | Comparability 1
on the basis of
the design study
controls for | Outcome 1
assessment of
outcome | Outcome 2
follow up long
enough for
outcomes to
occur | Outcome 3
adequacy of
follow up of
cohorts | TOT
AL | |---------------------------------------|--|---|---|--|--|---------------------------------------|---|---|-----------| | Reilev;
Denmark ¹ | la (1 point): truly representative of Danish patients diagnosed with COVID-19 - Danish administrative and health registries allow complete nationwide capture of an unselected cohort of all individuals tested for SARS-CoV-2 without restricting to those treated at hospitals and irrespective of socio-economic difference; long time frame from February til May; however: obesity and dementia, may be under-reported in the Danish hospital and prescription registries,thus causing an underestimation of the prevalence of these specific diseases; prioritized testing of individuals in hospitals | 2a (1 point):
drawn from the
same community
as the exposed
cohort | 3a (1 point):
secure record
of
the exposure | 4a (1 point): no
doubt about
temporal order
between exposure
and outcome | la (1 point): age,
sex, 1 of the
following
comorbidities:
ART, CANC,
CHF, CKD, CLD,
CRB, DEM, DM,
HTN, IHD,
obesity, Organ,
Resp, Rheuma | 1b (1 point):
record linkage | 2a (1 point): follow up adequate to determine death following COVID-19 (2 days before the index date and 30 days of follow up were available for the entire cohort) | 3a (1 point):
complete follow
up | 8 | | Merzon;
Israel ¹⁵¹ | Ib (1 point): somewhat representative since it is a population based study, using a health service database and pulling individuals within a specific time frame, however, it is unclear how many COVID-19 positive patients without info on the exposure were excluded from that sample due to missing data (some had no prior vit D test)- it is stated that 6215 out of 14022 positively and negatively tested subjects had to be excluded due to missing data on plasma 25(OH)D levels (=exposure) | 2a (1 point):
drawn from the
same community
as the exposed
cohort | 3a (1 point):
secure record of
the exposure | 4a (1 point): no
doubt about
temporal order
between exposure
and outcome | la (1 point): study
controls for age
(<50), sex,
comorbidities
(Depression,
schizophrenia,
DEM, DM, HTN,
CVD, chronic
lung disorder),
BMI, smoking,
lab values | 1b (1 point):
record linkage | 2a (1 point):
follow up
adequate to
determine
hospitalisation
following
COVID-19 | 3a (1 point):
complete follow
up | 8 | | Gu, T,
Mack;
USA ¹⁸¹ | 1b (1 point): somewhat representative since all patients tested for COVID-19 at univeristy of michigan medicine were selected within certain time frame; single center; | 2a (1 point):
drawn from the
same community
as the exposed
cohort | 3a (1 point):
secure record of
the exposure | 4a (1 point): no
doubt about
temporal order
between exposure
and outcome | 1b (1 point):
model 1) age,
race/ethnicity,
sex, 2) adjustment
(1)+SES, and 3)
adjustment
(2)+comorbidity
score | 1b (1 point):
record linkage | 2a (1 points):
cases from March
10, April 22,
follow up until
July | 3a (1 point):
complete follow
up | 8 | | Study | Selection 1 representativeness of the exposed cohort | Selection 2
selection of the
non exposed
cohort | Selection 3
ascertainment of
exposure | Selection 4 demonstration that outcome of interest was not present at start of study meant is not death but the disease incident | Comparability 1
on the basis of
the design study
controls for | Outcome 1
assessment of
outcome | Outcome 2
follow up long
enough for
outcomes to
occur | Outcome 3
adequacy of
follow up of
cohorts | TOT
AL | |--|--|---|---|--|---|---------------------------------------|--|---|-----------| | Giannouc
hos;
Mexico ²³³ | la (1 point): truly representative of COVID-19 positive patients that were reported to a nation-level dataset (Mexico) | 2a (1 point):
drawn from the
same community
as the exposed
cohort | 3a (1 point):
secure record of
the exposure | 4a (1 point): no
doubt about
temporal order
between exposure
and outcome | 1b (1 point): age,
sex, Mexican
nationality,
smoking,
comorbidities
(obesity, DM,
HTN, Immun,
CVD, AST,
COPD, CRD | 1b (1 point):
record linkage | 2a (1 point):
follow up
adequate to
determine
outcomes
following
COVID-19 | 3a (1 point):
complete follow
up | 8 | | Denova-
Gutiérrez;
Mexico ²³¹ | la (1 point): truly representative of COVID-19 positive patients that may develop severe adverse COVID-19-related outcomes at hospital admission; nationwide data from hospital surveillance and sentinel surveillance | 2a (1 point):
drawn from the
same community
as the exposed
cohort | 3a (1 point):
secure record of
the exposure | 4a (1 point): no
doubt about
temporal order
between exposure
and outcome | 1b (1 point): adjusted for age, sex, smoking status, obesity history of chronic diseases (HTN, DM, Obesity, CVD, CKD, immunosuppressi on), place of care, USMER2, and drug treatment | 1b (1 point):
record linkage | 2a (1 point):
follow up
adequate to
determine
outcome (it is
severe COVID-19
on admission, not
death) | 3a (1 point):
complete follow
up (it states that
info on hospial
admission and
status of treatment
and admission to
ICU were
availlable for all
cases) | 8 | | Li, J;
China ²⁵² | 1b (1 point): somewhat representative, since COVID-19 positive inpatients were included from one area only (Wuhan) and from 2 centers only | 2a (1 point):
drawn from the
same community
as the exposed
cohort | 3a (1 point):
secure record of
the exposure | 4a (1 point): no
doubt about
temporal order
between exposure
and outcome | Ib (1 point): study
controls for
additional factors
besides the most
important one:
sex, age,
comorbidities
(DM, malignancy,
HTN, coronary
heart disease,
ART, CVD) | 1b (1 point):
record linkage | 2a (1 point):
follow up
adequate to
determine
hospitalisation
following
COVID-19 | 3a (1 point):
complete follow
up; they seem to
have chosen all
patients in a
certain time frame
without exlcuding
any of them | 8 | | Study | Selection 1 representativeness of the exposed cohort | Selection 2
selection of the
non exposed
cohort | Selection 3
ascertainment of
exposure | Selection 4 demonstration that outcome of interest was not present at start of study meant is not death but the disease incident | Comparability 1
on the basis of
the design study
controls for | Outcome 1
assessment of
outcome | Outcome 2
follow up long
enough for
outcomes to
occur | Outcome 3
adequacy of
follow up of
cohorts | TOT AL | |---------------------------------------|---|---|--|--|--|--|---|--|--------| | Xu, J;
China ²⁶⁶ | 1b (1 point): somewhat representative, since COVID-19 positive inpatients were included from one area only (Wuhan) and from 3 centers only; patients that died within 48 hours were excluded (because their durations in ICUs were too short to reveal the effectiveness of treatments receied in ICUs and to eliminate the bias on data collection of organ function or complications) | 2a (1 point):
drawn from the
same community
as the exposed
cohort | 3a (1 point):
secure record of
the exposure by
medical records | 4a (1 point): no
doubt about
temporal order
between exposure
and outcome | 1b (1 point): age,
comorbidities
(malignancy, liver
dsyfunction), lab
values,
complications | 1c (0 points):
patients
discharged were
called to record
their living status | 2a (1 point):
follow up
adequate to
determine
hospitalisation
following
COVID-19 (2
months) | 3a (1 point):
follow up was
complete | 7 | | Tai;
China ²⁶¹ | 1b (1 point): somewhat representative, since COVID-19 positive inpatients were included from one area (Changsha) and from 1 center only; 43 patients out of 394 patients had no available medial information or duplicated records and were excluded (we can assume missing at random?) | 2a (1 point):
drawn from the
same community
as the exposed
cohort | 3a (1 point):
secure record of
the exposure by
medical records | 4a (1 point): no
doubt about
temporal order
between exposure
and outcome | 1b (1 point): age,
sex, comorbidities
(CVD, DM, lung
diseases), chest
tightness | 1b (1 point):
record linkage
| 2a (1 point): follow up adequate to determine discharge alive and referral to the designated hospital for intensive care, minimum 15 days | 3a (1 point):
follow up was
complete for
sample (referral
and discharge
could be
evaluated by the
hospital itself) | 8 | | Sy;
Philippine
s ²⁶⁰ | 1a (1 point): truly representative, all reported COVID -19 cases in the Phillipines as of May 2020 were included in the study | 2a (1 point):
drawn from the
same community
as the exposed
cohort | 3b (1 point):
structured
interviews by the
physician or nurse
to fill out form on
exposure (TB) | 4a (1 point): no
doubt about
temporal order
between exposure
and outcome | 1b (1 point):
matching design
with age, sex, and
other comorbid
conditions | 1b (1 point):
record linkage,
outcomes reported
by the Department
of Health | 2a (1 point): yes,
minimum 1
month, sufficient
to assess death
and recovery | 3a (1 point):
adequate follow
up; no cases were
lost to follow up
(some cases had
covariates
missing, however
missing at
random) | 8 | | Study | Selection 1 representativeness of the exposed cohort | Selection 2
selection of the
non exposed
cohort | Selection 3
ascertainment of
exposure | Selection 4 demonstration that outcome of interest was not present at start of study meant is not death but the disease incident | Comparability 1
on the basis of
the design study
controls for | Outcome 1
assessment of
outcome | Outcome 2
follow up long
enough for
outcomes to
occur | Outcome 3
adequacy of
follow up of
cohorts | TOT
AL | |--|--|---|---|--|---|---------------------------------------|---|--|-----------| | Al-
Salameh;
France ¹²⁴ | 1b (1 point): somewhat representative, adult patients with confirmed COVID-19 consecutively admitted to hospital, however single center | 2a (1 point):
drawn from the
same community
as the exposed
cohort | 3a (1 point):
secure record of
the exposure | 4a (1 point): no
doubt about
temporal order
between exposure
and outcome | 1b (1 point): model ICU admission: age, sex, BMI and comorbidities (DM), lab value; model in-hospital mortality: age, sex, lab values, comorbidities (DM, CVD), lab value | 1b (1 point):
record linkage | 2b (0 points): cases were included until April 21st, censoring took place on May 1st, there were 47 still hospitalised; sample sizes used in the models were admission ICU=326 and hospital mortality 370; they say 433 initially were included | 2c (0 points): 433 individuals were included, the number used in the model is N (ICU admission=326) and N (hospital mortality = 370) - they state 47 were still hospitalised at the time of censoring - follow up rate is <80% | 6 | | Conversa
no;
Italy ¹³⁸ | la (1 point): somewhat representative, because patients consecutively admitted to hospital with COVID-19 within certain time frame were from single center and one area in Italy; 21 were excluded due to incomplete data and lost ot follow up (no specification how many lost due to one or the other) | 2a (1 point):
drawn from the
same community
as the exposed
cohort | 3a (1 point):
secure record of
the exposure | 4a (1 point): no
doubt about
temporal order
between exposure
and outcome | 1b (1 point):
model 1: age,
Comorbidities
(HTN, CHF,
DM), ACE
inhibitor/ARBs;
model 2: age,
Comorbidities
(CKD, COPD,
CANC), ?-blocker | 1b (1 point):
record linkage | 2a (1 point): yes,
because the
median follow up
was 28 with a
range of 21-32 | 2b (1 point): 21
out of 212 were
lost due to
incomplete data or
follow up, nos
specification here.
If we assume
worst case that 20
are lost due to
follow up, then
that would
translate to a nr
lost of 9,4% | 8 | | Study | Selection 1 representativeness of the exposed cohort | Selection 2
selection of the
non exposed
cohort | Selection 3
ascertainment of
exposure | Selection 4 demonstration that outcome of interest was not present at start of study meant is not death but the disease incident | Comparability 1
on the basis of
the design study
controls for | Outcome 1
assessment of
outcome | Outcome 2
follow up long
enough for
outcomes to
occur | Outcome 3
adequacy of
follow up of
cohorts | TOT | |--|---|---|---|--|--|---------------------------------------|--|---|-----| | Kim, M;
Korea ²⁵⁰ | 1b (1 point): somewhat representative, multi center study, 5 centers in Daegu, in Korea; however, HbA1c values for a considerable proportion of the participants were missing; also 65.6% of the confirmed cases of COVID-19 in Daegu were associated with a single religious group. so as to the authors it is unlikely that the data collected are representative of the general population | 2a (1 point):
drawn from the
same community
as the exposed
cohort | 3a (1 point):
secure record of
the exposure | 4a (1 point): no
doubt about
temporal order
between exposure
and outcome | 1b (1point): age,
sex, comorbidities
(DM, HTN, CRD,
CVD, CKD, Resp,
CANC) | 1b (1 point):
record linkage | 2a (1 point):
authors make a
statement about
the number of
deaths in the
entire cohort,
however the
follow up period
is not stated | 2a (1 point): all
subjects in the
study were
accounted for | 8 | | Singh (a);
USA ²¹⁸ | 1a (1 point): truly representative; multiple large healthcare organizations in United States.identified COVID-19 patients; files from individuals Jan til May, long time period | 2a (1 point):
drawn from the
same community
as the exposed
cohort | 3a (1 point):
secure record of
the exposure | 4a (1 point): no
doubt about
temporal order
between exposure
and outcome | 1b (1 point): age,
race, ethnicity,
comorbidities
used for
matching;
comorbidity of
interest in
analysis: obesity | 1b (1 point):
record linkage | 2a (1 point):
outcomes were
assessed from
diagnosis to 30
days after the
index event | 2a (1 point): all
subjects in the
study were
accounted for | 8 | | Zhu;
China ²⁷⁷ | la (1 point): truly representative of patient with COVID-19 that was admitted to hospital that would either have or have not type 2 diabetes, multi center in Hubei Province, no systematic missing of cases | 2a (1 point):
drawn from the
same community
as the exposed
cohort | 3a (1 point):
secure record of
the exposure | 4a (1 point): no
doubt about
temporal order
between exposure
and outcome | 1b (1 point): age,
sex, comorbidities
(DM), hospital
site | 1b (1 point):
record linkage | 2a (1 point): 28
day follow up
after admission | 2a (1 point): all
subjects in the
study were
accounted for | 8 | | Antwi-
Amoaben
g; USA ¹⁶⁹ | 1b (1 point): somewhat representative, single center in USA, Nevada, all patients tested positive between 12. Mar-8. Mar were included | 2a (1 point):
drawn from the
same community
as the exposed
cohort | 3a (1 point):
secure record of
the exposure | 4a (1 point): no
doubt about
temporal order
between exposure
and outcome | 1b (1 point): age,
sex, ethnicity,
comorbidities
(DM, HTN,
obesity, CKD,
COPD), ICU stay | 1b (1 point):
record linkage | 2a (1 point):
follow up is not
mentioned,
however, the
outcomes for all
included cases
were recorded | 2a (1 point): all
subjects in the
study were
accounted for | 8 | ### 2.10. Systematic
reviews excluded after eligibility assessment #### Pre-print duplication: - 1. Katzenschlager S, Zimmer A, Gottschalk C, et al. Can we predict the severe course of COVID-19 a systematic review and meta-analysis of indicators of clinical outcome?; 2020. - 2. Parohan M, Yaghoubi S, Seraji A, Javanbakht MH, Sarraf P, Djalali M. Risk factors for mortality in patients with Coronavirus disease 2019 (COVID-19) infection: a systematic review and meta-analysis of observational studies. medRxiv 2020: 2020.04.09.20056291. - 3. Salunke A, Nandy K, Pathak S, et al. Coronavirus Disease (COVID-19) in Cancer Patients: A Systematic Review and Meta-Analysis to Evaluate Severity and Fatal Outcomes. SSRN Electronic Journal 2020. - 4. Soeroto AY, Soetedjo NN, Purwiga A, et al. Association of BMI and Obesity with Composite poor outcome in COVID-19 adult patients: A Systematic Review and Meta-Analysis. medRxiv 2020: 2020.06.28.20142240. - Ssentongo P, Ssentongo AE, Heilbrunn ES, Ba DM, Chinchilli VM. The association of cardiovascular disease and other pre-existing comorbidities with COVID-19 mortality: A systematic review and metaanalysis. medRxiv 2020: 2020.05.10.20097253. #### No citations for included primary studies: - 1. Fang X, Li S, Yu H, Wang P, Zhang Y, Chen Z, et al. Epidemiological, comorbidity factors with severity and prognosis of COVID-19: a systematic review and meta-analysis. Aging. 2020;12(13):12493-503 - 2. Pranata R, Huang I, Lim MA, Wahjoepramono EJ, July J. Impact of cerebrovascular and cardiovascular diseases on mortality and severity of COVID-19–systematic review, meta-analysis, and meta-regression. Journal of Stroke and Cerebrovascular Diseases. 2020;29(8):104949 - 3. Huang I, Lim MA, Pranata R. Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia A systematic review, meta-analysis, and meta-regression. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020;14(4):395-403 - 4. Seidu S, Gillies C, Zaccardi F, Kunutsor SK, Hartmann-Boyce J, Yates T, et al. The impact of obesity on severe disease and mortality in people with SARS-CoV-2: A systematic review and meta-analysis. Endocrinology, Diabetes & Metabolism. 2021;4(1):e00176 #### Citations do not match given references for primary studies: - 1. Varikasuvu SR, Dutt N, Thangappazham B, Varshney S. Diabetes and COVID-19: A pooled analysis related to disease severity and mortality. Primary Care Diabetes. 2021;15(1):24-7. - 2. Hussain A, Mahawar K, Xia Z, Yang W, El-Hasani S.: Obesity and mortality of COVID-19. Meta-analysis. Obesity Research & Clinical Practice. 2020;14(4):295-300. Currently retracted ### Estimates of prevalence: 1. Kulkarni AV, Kumar P, Tevethia HV, Premkumar M, Arab JP, Candia R, et al. Systematic review with meta-analysis: liver manifestations and outcomes in COVID-19. Alimentary pharmacology & therapeutics. 2020;52(4):584-99. ### Full-text was not retrievable: 1. Plasencia-Urizarri, T. M., Aguilera-Rodríguez, R. and Almaguer-Mederos, L. E. [Comorbidities and clinical severity of COVID-19: systematic review and meta-analysis] #### 2.11. Excluded primary studies Excluded based on the outcome Composite outcome: severe disease (n=36) - 1. Cai Q, Chen F, Wang T, Luo F, Liu X, Wu Q, et al. Obesity and COVID-19 Severity in a Designated Hospital in Shenzhen, China. Diabetes care. 2020. - 2. Cai Q, Huang D, Ou P, Yu H, Zhu Z, Xia Z, et al. 2019-nCoV Pneumonia in a Normal Work Infectious Diseases Hospital Besides Hubei Province, China. SSRN. 2020. - 3. Cai Q, Huang D, Ou P, Yu H, Zhu Z, Xia Z, et al. COVID-19 in a Designated Infectious Diseases Hospital Outside Hubei Province, China. Allergy. 2020. - 4. Cen Y, Chen X, Shen Y, Zhang XH, Lei Y, Xu C, et al. Risk factors for disease progression in patients with mild to moderate coronavirus disease 2019—a multi-centre observational study. Clinical Microbiology and Infection. 2020;26(9):1242-7. - 5. Chung SM, Lee YY, Ha E, Yoon JS, Won KC, Lee HW, et al. The Risk of Diabetes on Clinical Outcomes in Patients with Coronavirus Disease 2019: A Retrospective Cohort Study. Diabetes & metabolism journal. 2020;44(3):405-13. - 6. Feng Z, Li J, Yao S, Yu Q, Zhou W, Mao X, et al. The Use of Adjuvant Therapy in Preventing Progression to Severe Pneumonia in Patients with Coronavirus Disease 2019: A Multicenter Data Analysis. medRxiv. 2020:2020.04.08.20057539. - 7. Gao F, Zheng KI, Wang XB, Sun QF, Pan KH, Wang TY, et al. Obesity Is a Risk Factor for Greater COVID-19 Severity. Diabetes care. 2020. - 8. Gao F, Zheng KI, Wang XB, Yan HD, Sun QF, Pan KH, et al. Metabolic associated fatty liver disease increases COVID-19 disease severity in non-diabetic patients. Journal of gastroenterology and hepatology. 2020. - Grandbastien M, Piotin A, Godet J, Abessolo-Amougou I, Ederlé C, Enache I, et al. SARS-CoV-2 Pneumonia in Hospitalized Asthmatic Patients Did Not Induce Severe Exacerbation. J Allergy Clin Immunol Pract. 2020;8(8):2600-7. - 10. Hu L, Chen S, Fu Y, Gao Z, Long H, Wang JM, et al. Risk Factors Associated with Clinical Outcomes in 323 COVID-19 Hospitalized Patients in Wuhan, China. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2020 - 11. Huang R, Zhu L, Xue L, Liu L, Yan X, Wang J, et al. Clinical findings of patients with coronavirus disease 2019 in Jiangsu province, China: A retrospective, multi-center study. PLoS neglected tropical diseases. 2020;14(5):e0008280. - 12. Hultcrantz M, Richter J, Rosenbaum C, Patel D, Smith E, Korde N, et al. COVID-19 infections and outcomes in patients with multiple myeloma in New York City: a cohort study from five academic centers. medRxiv: the preprint server for health sciences. 2020:2020.06.09.20126516. - 13. Jang JG, Hur J, Choi EY, Hong KS, Lee W, Ahn JH. Prognostic Factors for Severe Coronavirus Disease 2019 in Daegu, Korea. J Korean Med Sci. 2020;35(23):e209-e. - 14. Jee J, Foote MB, Lumish M, Stonestrom AJ, Wills B, Narendra V, et al. Chemotherapy and COVID-19 Outcomes in Patients With Cancer. J Clin Oncol. 2020;38(30):3538-46. - 15. Ji W, Huh K, Kang M, Hong J, Bae GH, Lee R, et al. Effect of Underlying Comorbidities on the Infection and Severity of COVID-19 in Korea: a Nationwide Case-Control Study. J Korean Med Sci. 2020;35(25):e237-e. - 16. Liang W, Guan W, Chen R, Wang W, Li J, Xu K, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. The Lancet Oncology. 2020. - 17. Liang W, Liang H, Ou L, Chen B, Chen A, Li C, et al. Development and Validation of a Clinical Risk Score to Predict the Occurrence of Critical Illness in Hospitalized Patients With COVID-19. JAMA internal medicine. 2020;180(8):1081-9. - 18. Liu X, Zhou H, Zhou Y, Wu X, Zhao Y, Lu Y, et al. Risk factors associated with disease severity and length of hospital stay in COVID-19 patients. Journal of Infection. 2020;81(1):e95-e7. - 19. Romero-Sánchez CM, Díaz-Maroto I, Fernández-Díaz E, Sánchez-Larsen Á, Layos-Romero A, García-García J, et al. Neurologic manifestations in hospitalized patients with COVID-19: The ALBACOVID registry. Neurology. 2020;95(8):e1060-e70. - 20. Scarfò L, Chatzikonstantinou T, Rigolin GM, Quaresmini G, Motta M, Vitale C, et al. COVID-19 severity and mortality in patients with chronic lymphocytic leukemia: a joint study by ERIC, the European Research Initiative on CLL, and CLL Campus. Leukemia. 2020;34:1-10. - 21. Schalekamp S, Huisman M, van Dijk RA, Boomsma MF, Freire Jorge PJ, de Boer WS, et al. Model-based Prediction of Critical Illness in Hospitalized Patients with COVID-19. Radiology. 2020;0(0):202723. - 22. Shi Y, Yu X, Zhao H, Wang H, Zhao R, Sheng J. Host susceptibility to severe COVID-19 and establishment of a host risk score: findings of 487 cases outside Wuhan. Critical care (London, England). 2020;24(1):108. - 23. Targher G, Mantovani A, Wang X-B, Yan H-D, Sun Q-F, Pan K-H, et al. Patients with diabetes are at higher risk for severe illness from COVID-19. Diabetes & Metabolism. 2020. - 24. Tian J, Yuan X, Xiao J, Zhong Q, Yang C, Liu B, et al. Clinical characteristics and risk factors associated with COVID-19 disease severity in patients with cancer in Wuhan, China: a multicentre, retrospective, cohort study. The Lancet Oncology. 2020;21(7):893-903. - 25. Wang G, Wu C, Zhang Q, Wu F, Yu B, Lv J, et al. C-Reactive Protein Level May Predict the Risk of COVID-19 Aggravation. Open Forum Infectious Diseases. 2020;7(5). - 26. Wei YY, Wang RR, Zhang DW, Tu YH, Chen CS, Ji S, et al. Risk factors for severe COVID-19: evidence from 167 hospitalized patients in Anhui, China. The Journal of infection. 2020. - 27. Yang Y, Ding L, Zou X, Shen Y, Hu D, Hu X, et al. Visceral Adiposity and High Intramuscular Fat Deposition Independently Predict Critical Illness in Patients with SARS-CoV-2. Obesity (Silver Spring). 2020;28(11):2040-8. - 28. Yu C, Lei Q, Li W, Wang X, Li W, Liu W. Epidemiological and clinical characteristics of 1663 hospitalized patients infected with COVID-19 in Wuhan, China: a single-center experience. Journal of infection and public health. 2020;13(9):1202-9. - 29. Yu X, Sun X, Cui P, Pan H, Lin S, Han R, et al. Epidemiological and Clinical Characteristics of 333 Confirmed Cases with Coronavirus Disease 2019 in Shanghai, China. Transbound Emerg Dis. 2020. - 30. Zhang J, Lu S, Wang X, Jia X, Li J, Lei H, et al. Do underlying cardiovascular diseases have any impact on hospitalised patients with COVID-19? Heart (British Cardiac Society). 2020;106(15):1148-53. - 31. Zhang L, Zhu F, Xie L, Wang C, Wang J, Chen R, et al. Clinical characteristics of COVID-19-infected cancer patients: a retrospective case study in three hospitals within Wuhan, China. Annals of oncology: official journal of the European Society for Medical Oncology. 2020;31(7):894-901. - 32. Zhang S-Y, Lian J-S, Hu J-H, Zhang X-L, Lu Y-F, Cai H, et al. Clinical characteristics of different subtypes and risk factors for the severity of illness in patients with COVID-19 in
Zhejiang, China. Infectious Diseases of Poverty. 2020;9(1):85. - 33. Zhang YT, Deng AP, Hu T, Chen XG, Zhuang YL, Tan XH, et al. Clinical outcomes of COVID-19 cases and influencing factors in Guangdong province. Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi. 2020;41(0):E057. - 34. Zheng KI, Gao F, Wang X-B, Sun Q-F, Pan K-H, Wang T-Y, et al. Obesity as a risk factor for greater severity of COVID-19 in patients with metabolic associated fatty liver disease. Metabolism. 2020:154244. - 35. Zhou Y-J, Zheng KI, Wang X-B, Sun Q-F, Pan K-H, Wang T-Y, et al. Metabolic-associated fatty liver disease is associated with severity of COVID-19. Liver International. 2020;40(9):2160-3. - 36. Zhou Y-J, Zheng KI, Wang X-B, Yan H-D, Sun Q-F, Pan K-H, et al. Younger patients with MAFLD are at increased risk of severe COVID-19 illness: A multicenter preliminary analysis. Journal of hepatology. 2020;73(3):719-21. Outcome: incidence or a positive test result (n=16) - 1. Alam MR, Kabir MR, Reza S. Comorbidities might be a risk factor for the incidence of COVID-19: Evidence from a web-based survey of 780,961 participants. medRxiv. 2020;2020.06.22.20137422. - 2. Cho ER, Slutsky AS, Jha P. Smoking and the risk of COVID-19 infection in the UK Biobank Prospective Study. medRxiv. 2020:2020.05.05.20092445. - 3. Darling AL, Ahmadi KR, Ward KA, Harvey NC, Couto Alves A, Dunn-Waters DK, et al. Vitamin D status, body mass index, ethnicity and COVID-19: Initial analysis of the first-reported UK Biobank COVID-19 positive cases (n 580) compared with negative controls (n 723). medRxiv. 2020:2020.04.29.20084277. - 4. de Lusignan S, Dorward J, Correa A, Jones N, Akinyemi O, Amirthalingam G, et al. Risk factors for SARS-CoV-2 among patients in the Oxford Royal College of General Practitioners Research and Surveillance Centre primary care network: a cross-sectional study. Lancet Infect Dis. 2020. - 5. Gubatan J, Levitte S, Balabanis T, Patel A, Sharma A, Habtezion A. SARS-CoV-2 Testing, Prevalence, and Predictors of COVID-19 in Patients with Inflammatory Bowel Disease in Northern California. Gastroenterology. 2020;159(3):1141-4.e2. - 6. Hernández-Garduño E. Obesity is the comorbidity more strongly associated for Covid-19 in Mexico. A case-control study. Obesity Research & Clinical Practice. 2020;14(4):375-9. - 7. Ho FK, Celis-Morales CA, Gray SR, Katikireddi SV, Niedzwiedz CL, Hastie C, et al. Modifiable and non-modifiable risk factors for COVID-19, and comparison to risk factors for influenza and pneumonia: results from a UK Biobank prospective cohort study. BMJ Open. 2020;10(11):e040402. - 8. Huang J, Xie N, Hu X, Yan H, Ding J, Liu P, et al. Epidemiological, virological and serological features of COVID-19 cases in people living with HIV in Wuhan City: A population-based cohort study. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2020. - 9. Leung NY, Bulterys MA, Bulterys PL. Predictors of COVID-19 incidence, mortality, and epidemic growth rate at the country level. medRxiv. 2020:2020.05.15.20101097. - 10. Martin CA, Jenkins DR, Minhas JS, Gray LJ, Tang J, Williams C, et al. Socio-demographic heterogeneity in the prevalence of COVID-19 during lockdown is associated with ethnicity and household size: Results from an observational cohort study. EClinicalMedicine. 2020;25:100466. - 11. Prats-Uribe A, Paredes R, Prieto-Alhambra D. Ethnicity, comorbidity, socioeconomic status, and their associations with COVID-19 infection in England: a cohort analysis of UK Biobank data. medRxiv. 2020;2020,05,06,20092676. - 12. Raisi-Estabragh Z, McCracken C, Ardissino M, Bethell M, Cooper J, Cooper C, et al. Non-white ethnicity, male sex and higher body mass index, but not medication acting on the renin-angiotensin system are associated with coronavirus disease 2019 (COVID-19) hospitalisation: review of the first 669 cases from the UK bio bank. MedRxiv. 2020. - 13. Rozenfeld Y, Beam J, Maier H, Haggerson W, Boudreau K, Carlson J, et al. A model of disparities: risk factors associated with COVID-19 infection. Int J Equity Health. 2020;19(1):126. - Sakowicz A, Ayala AE, Ukeje CC, Witting CS, Grobman WA, Miller ES. Risk factors for severe acute respiratory syndrome coronavirus 2 infection in pregnant women. American journal of obstetrics & gynecology MFM. 2020;2(4):100198. - 15. Taxonera C, Sagastagoitia I, Alba C, Mañas N, Olivares D, Rey E. 2019 novel coronavirus disease (COVID-19) in patients with inflammatory bowel diseases. Alimentary pharmacology & therapeutics. 2020;52(2):276-83. - 16. Vahidy FS, Nicolas JC, Meeks JR, Khan O, Pan A, Jones SL, et al. Racial and ethnic disparities in SARS-CoV-2 pandemic: analysis of a COVID-19 observational registry for a diverse US metropolitan population. BMJ Open. 2020;10(8):e039849 Composite outcome: ICU or death (n=9) - 1. Almazeedi S, Al-Youha S, Jamal MH, Al-Haddad M, Al-Muhaini A, Al-Ghimlas F, et al. Characteristics, risk factors and outcomes among the first consecutive 1096 patients diagnosed with COVID-19 in Kuwait. EClinicalMedicine. 2020;24. - 2. Antonio-Villa NE, Bello-Chavolla OY, Vargas-Vázquez A, Fermín-Martínez CA, Márquez-Salinas A, Bahena-López JP. Health-care workers with COVID-19 living in Mexico City: clinical characterization and related outcomes. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2020. - 3. Cecconi M, Piovani D, Brunetta E, Aghemo A, Greco M, Ciccarelli M, et al. Early Predictors of Clinical Deterioration in a Cohort of 239 Patients Hospitalized for Covid-19 Infection in Lombardy, Italy. Journal of clinical medicine. 2020;9(5). - 4. Colombi D, Bodini FC, Petrini M, Maffi G, Morelli N, Milanese G, et al. Well-aerated Lung on Admitting Chest CT to Predict Adverse Outcome in COVID-19 Pneumonia. Radiology. 2020:201433. - 5. Feng X, Li P, Ma L, Liang H, Lei J, Li W, et al. Clinical Characteristics and Short-Term Outcomes of Severe Patients With COVID-19 in Wuhan, China. Frontiers in medicine. 2020;7:491. - 6. Guan WJ, Liang WH, Zhao Y, Liang HR, Chen ZS, Li YM, et al. Comorbidity and its impact on 1590 patients with Covid-19 in China: A Nationwide Analysis. The European respiratory journal. 2020. - 7. Hajifathalian K, Kumar S, Newberry C, Shah S, Fortune B, Krisko T, et al. Obesity is associated with worse outcomes in COVID-19: Analysis of Early Data From New York City. Obesity (Silver Spring). 2020 - 8. Kaeuffer C, Le Hyaric C, Fabacher T, Mootien J, Dervieux B, Ruch Y, et al. Risk Factors Associated with Severe COVID-19 in Eastern France: Analysis of 1045 Cases. SSRN. 2020. - 9. Piano S, Dalbeni A, Vettore E, Benfaremo D, Mattioli M, Gambino CG, et al. Abnormal liver function tests predict transfer to intensive care unit and death in COVID-19. Liver international: official journal of the International Association for the Study of the Liver. 2020;40(10):2394-406. Outcome: other (n=28) Composite: COVID-19 progression - 1. Choi MH, Ahn H, Ryu HS, Kim B-J, Jang J, Jung M, et al. Clinical Characteristics and Disease Progression in Early-Stage COVID-19 Patients in South Korea. Journal of clinical medicine. 2020;9(6):1959. - 2. Ji D, Qin E, Xu J, Zhang D, Cheng G, Wang Y, et al. Non-alcoholic fatty liver diseases in patients with COVID-19: A retrospective study. Journal of hepatology. 2020;73(2):451-3. ### Composite: ICU or intubation 3. Lighter J, Phillips M, Hochman S, Sterling S, Johnson D, Francois F, et al. Obesity in patients younger than 60 years is a risk factor for Covid-19 hospital admission. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2020. ### Composite: ICU or intubation or death - 4. Xiong TY, Huang FY, Liu Q, Peng Y, Xu YN, Wei JF, et al. Hypertension is a risk factor for adverse outcomes in patients with coronavirus disease 2019: a cohort study. Annals of medicine. 2020;52(7):361-6. - 5. Yan X, Wang C, Peng D, Han X, Fan Y, Fang Z, et al. Clinical Features, Treatment and Outcomes of 218 Patients with COVID-19: A Retrospective, Multicenter Study Based on Clinical Classification. Treatment and Outcomes of. 2020;218 - 6. Ye C, Zhang S, Zhang X, Cai H, Gu J, Lian J, et al. Impact of comorbidities on patients with COVID-19: A large retrospective study in Zhejiang, China. Journal of medical virology. 2020. - 7. Zhang Y, Li H, Zhang J, Cao Y, Zhao X, Yu N, et al. The clinical characteristics and outcomes of patients with diabetes and secondary hyperglycaemia with coronavirus disease 2019: A single-centre, retrospective, observational study in Wuhan. Diabetes, obesity & metabolism. 2020;22(8):1443-54. ## Complications 8. Yanover C, Mizrahi B, Kalkstein N, Marcus K, Akiva P, Barer Y, et al. What Factors Increase the Risk of Complications in SARS-CoV-2-Infected Patients? A Cohort Study in a Nationwide Israeli Health Organization. JMIR Public Health Surveill. 2020;6(3):e20872-e. ## Myocardial injury: - 9. Chen C, Chen C, Yan JT, Zhou N, Zhao JP, Wang DW. Analysis of myocardial injury in patients with COVID-19 and association between concomitant cardiovascular diseases and severity of COVID-19. Zhonghua xin xue guan bing za zhi. 2020;48(0):E008. - 10. Shi S, Qin M, Cai Y, Liu T, Shen B, Yang F, et al. Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. European heart journal. 2020;41(22):2070-9. - 11. Wei JF, Huang FY, Xiong TY, Liu Q, Chen H, Wang H, et al. Acute myocardial injury is common in patients with COVID-19 and impairs their prognosis. Heart (British Cardiac Society). 2020;106(15):1154-9. ### Lymphocyte reduction 12. Fei J, Fu L, Li Y, Xiang H-X, Xiang Y, Li M-D, et al. Reduction of lymphocyte at early stage elevates severity and death risk of COVID-19 patients: a hospital-based case-cohort study. medRxiv. 2020:2020.04.02.20050955. #### Cholestasis; Hypoproteinemia; Hepatocellular injury 13. Fu L, Fei J, Xu S, Xiang H-X, Xiang Y, Tan Z-X, et al.
Acute liver injury and its association with death risk of patients with COVID-19: a hospital-based prospective case-cohort study. medRxiv. 2020:2020.04.02.20050997. #### Gastrointestinal and Hepatic Manifestations: 14. Hajifathalian K, Krisko T, Mehta A, Kumar S, Schwartz R, Fortune B, et al. Gastrointestinal and Hepatic Manifestations of 2019 Novel Coronavirus Disease in a Large Cohort of Infected Patients From New York: Clinical Implications. Gastroenterology. 2020;159(3):1137-40.e2. ### Acute kidney injury - 15. Hirsch JS, Ng JH, Ross DW, Sharma P, Shah HH, Barnett RL, et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney international. 2020;98(1):209-18. - 16. Xu S, Fu L, Fei J, Xiang H-X, Xiang Y, Tan Z-X, et al. Acute kidney injury at early stage as a negative prognostic indicator of patients with COVID-19: a hospital-based retrospective analysis. medRxiv. 2020:2020.03.24.20042408. #### Venous thromboembolism 17. Middeldorp S, Coppens M, van Haaps TF, Foppen M, Vlaar AP, Müller MCA, et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. Journal of thrombosis and haemostasis: JTH. 2020;18(8):1995-2002. #### Refractory COVID-19 pneumonia 18. Mo P, Xing Y, Xiao Y, Deng L, Zhao Q, Wang H, et al. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. Clinical Infectious Diseases. 2020. ### COVID-19 pneumonia 19. Pongpirul WA, Wiboonchutikul S, Charoenpong L, Panitantum N, Vachiraphan A, Uttayamakul S, et al. Clinical course and potential predictive factors for pneumonia of adult patients with Coronavirus Disease 2019 (COVID-19): A retrospective observational analysis of 193 confirmed cases in Thailand. PLoS neglected tropical diseases. 2020;14(10):e0008806-e. #### **ARDS** 20. Yu T, Cai S, Zheng Z, Cai X, Liu Y, Yin S, et al. Association Between Clinical Manifestations and Prognosis in Patients with COVID-19. Clinical therapeutics. 2020. #### Proteinuria remission 21. Pei G, Zhang Z, Peng J, Liu L, Zhang C, Yu C, et al. Renal Involvement and Early Prognosis in Patients with COVID-19 Pneumonia. Journal of the American Society of Nephrology. 2020;31(6):1157-65. #### Prevalence estimates 22. Rugge M, Zorzi M, Guzzinati S. SARS-CoV-2 infection in the Italian Veneto region: adverse outcomes in patients with cancer. Nature Cancer. 2020;1(8):784-8. ## Association between tocilizumab and survival 23. Somers EC, Eschenauer GA, Troost JP, Golob JL, Gandhi TN, Wang L, et al. Tocilizumab for treatment of mechanically ventilated patients with COVID-19. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2020. ### Chest Radiograph Severity Score 24. Toussie D, Voutsinas N, Finkelstein M, Cedillo MA, Manna S, Maron SZ, et al. Clinical and Chest Radiography Features Determine Patient Outcomes in Young and Middle-aged Adults with COVID-19. Radiology. 2020;297(1):E197-e206. ## Olfactory loss 25. Yan CH, Faraji F, Prajapati DP, Ostrander BT, DeConde AS. Self-reported olfactory loss associates with outpatient clinical course in Covid-19. International forum of allergy & rhinology. 2020. ## Discharge within two weeks Zhao W, Yu S, Zha X, Wang N, Pang Q, Li D, et al. Clinical characteristics and durations of hospitalized patients with COVID-19 in Beijing: a retrospective cohort study. medRxiv. 2020:2020.03.13.20035436 ## Transfer to high-level hospital and clinical death 27. Zhou X, Zhu J, Xu T. Clinical characteristics of coronavirus disease 2019 (COVID-19) patients with hypertension on renin–angiotensin system inhibitors. Clinical and Experimental Hypertension. 2020;42(7):656-60. ### Death during admission to hospital 28. Yang K, Sheng Y, Huang C, Jin Y, Xiong N, Jiang K, et al. Clinical characteristics, outcomes, and risk factors for mortality in patients with cancer and COVID-19 in Hubei, China: a multicentre, retrospective, cohort study. The Lancet Oncology. 2020;21(7):904-13. Excluded based on the study population or a risk factor: #### Irrespective of SARS-CoV-2 status (n=9) - 1. Atkins JL, Masoli JAH, Delgado J, Pilling LC, Kuo C-L, Kuchel GA, et al. Preexisting Comorbidities Predicting COVID-19 and Mortality in the UK Biobank Community Cohort. The Journals of Gerontology: Series A. 2020;75(11):2224-30. - 2. Bhaskaran K, Rentsch C, MacKenna B, Schultz A, Mehrkar A, Bates C, et al. HIV infection and COVID-19 death: population-based cohort analysis of UK primary care data and linked national death registrations within the OpenSAFELY platform. medRxiv. 2020;2020.08.07.20169490. - 3. Del Amo J, Polo R, Moreno S, Díaz A, Martínez E, Arribas JR, et al. Incidence and Severity of COVID-19 in HIV-Positive Persons Receiving Antiretroviral Therapy: A Cohort Study. Annals of internal medicine. 2020;173(7):536-41. - 4. Hamer M, Gale CR, Kivimäki M, Batty GD. Overweight, obesity, and risk of hospitalization for COVID-19: A community-based cohort study of adults in the United Kingdom. Proceedings of the National Academy of Sciences. 2020:202011086. - 5. Hamer M, Kivimäki M, Gale CR, Batty GD. Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: A community-based cohort study of 387,109 adults in UK. Brain Behav Immun. 2020;87:184-7. - Khawaja AP, Warwick AN, Hysi PG, Kastner A, Dick A, Khaw PT, et al. Associations with covid-19 hospitalisation amongst 406,793 adults: the UK Biobank prospective cohort study. medRxiv. 2020:2020.05.06.20092957. - 7. Lassale C, Gaye B, Hamer M, Gale CR, Batty GD. Ethnic disparities in hospitalisation for COVID-19 in England: The role of socioeconomic factors, mental health, and inflammatory and pro-inflammatory factors in a community-based cohort study. Brain Behav Immun. 2020;88:44-9. - 8. Patel AP, Paranjpe MD, Kathiresan NP, Rivas MA, Khera AV. Race, Socioeconomic Deprivation, and Hospitalization for COVID-19 in English participants of a National Biobank. medRxiv. 2020:2020.04.27.20082107. - 9. Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584(7821):430-6. #### Patients undergoing surgery 1. Nepogodiev D, Glasbey J, Li E, Omar O, Simoes J, Abbott T. Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study. Lancet (London, England). 2020;396(10243):27-38 ### Risk: fasting blood glucose - 1. Chen Y, Yang D, Cheng B, Chen J, Peng A, Yang C, et al. Clinical Characteristics and Outcomes of Patients With Diabetes and COVID-19 in Association With Glucose-Lowering Medication. Diabetes care. 2020;43(7):1399-407 - 2. Zhu B, Jiang C, Feng X, Zheng Y, Yang J, Wang F, et al. Correlation between Fasting Blood Glucose Level at Admission and Mortality in COVID-19 Patients: A Retrospective Study. Research Square. 2020 #### Risk: treatment with Tocilizumab Ramaswamy M, Mannam P, Comer R, Sinclair E, McQuaid DB, Schmidt ML. Off-Label Real World Experience Using Tocilizumab for Patients Hospitalized with COVID-19 Disease in a Regional Community Health System: A Case-Control Study. medRxiv. 2020:2020.05.14.20099234 #### Risk: visceral fat - 1. Battisti S, Pedone C, Napoli N, Russo E, Agnoletti V, Nigra SG, et al. Computed Tomography Highlights Increased Visceral Adiposity Associated With Critical Illness in COVID-19. Diabetes care. 2020;43(10):e129-e30. - Watanabe M, Caruso D, Tuccinardi D, Risi R, Zerunian M, Polici M, et al. Visceral fat shows the strongest association with the need of intensive care in patients with COVID-19. Metabolism. 2020;111:154319 #### Risk: CRP and CD4 in HIV patients 1. Karmen-Tuohy S, Carlucci PM, Zervou FN, Zacharioudakis IM, Rebick G, Klein E, et al. Outcomes Among HIV-Positive Patients Hospitalized With COVID-19. Journal of acquired immune deficiency syndromes (1999). 2020;85(1):6-10. ### Simulated population - 1. Caramelo F, Ferreira N, Oliveiros B. Estimation of risk factors for COVID-19 mortality preliminary results. medrxiv. 2020:10.1101. - Souza FSH, Hojo-Souza NS, Santos EB, Silva CM, Guidoni DL. Predicting the disease outcome in COVID-19 positive patients through Machine Learning: a retrospective cohort study with Brazilian data. medRxiv. 2020:2020.06.26.20140764. #### Other reasons: #### Retracted 1. Mehra MR, Desai SS, Kuy S, Henry TD, Patel AN. Cardiovascular Disease, Drug Therapy, and Mortality in Covid-19. New England Journal of Medicine. 2020;382(25):e102. #### Lack of reporting - 2. Caraballo C, McCullough M, Fuery MA, Chouairi F, Keating C, Ravindra NG, et al. COVID-19 infections and outcomes in a live registry of heart failure patients across an integrated health care system. PloS one. 2020;15(9):e0238829 - Wang Z, Zheutlin AB, Kao Y-H, Ayers KL, Gross SJ, Kovatch P, et al. Analysis of hospitalized COVID-19 patients in the Mount Sinai Health System using electronic medical records (EMR) reveals important prognostic factors for improved clinical outcomes. medRxiv. 2020:2020.04.28.20075788. #### Not-age adjusted (excluded after data extraction) 4. Patel M, Gangemi A, Marron R, Chowdhury J, Yousef I, Zheng M, et al. Retrospective analysis of high flow nasal therapy in COVID-19-related moderate-to-severe hypoxaemic respiratory failure. BMJ Open Respir Res. 2020;7(1). ## Report separate outcomes for men and women Poblador-Plou B, Carmona-Pírez J, Ioakeim-Skoufa I, Poncel-Falcó A, Bliek-Bueno K, Cano-Del Pozo M, et al. Baseline Chronic Comorbidity and Mortality in Laboratory-Confirmed COVID-19 Cases: Results from the PRECOVID Study in Spain. Int J Environ Res Public Health. 2020;17(14):5171. ## 3. References - 1. Aggarwal G, Cheruiyot I, Aggarwal S, et al. Association of Cardiovascular Disease With Coronavirus Disease 2019 (COVID-19) Severity: A Meta-Analysis. *Current problems in cardiology* 2020; **45**(8): 100617. - 2. Awortwe C, Cascorbi I. Meta-analysis on outcome-worsening comorbidities of COVID-19 and related potential drug-drug interactions.
Pharmacological Research 2020: 105250. - 3. Bellou V, Tzoulaki I, Evangelou E, Belbasis L. Risk factors for adverse clinical outcomes in patients with COVID-19: A systematic review and meta-analysis. *MedRxiv* 2020. - 4. Biswas M, Rahaman S, Biswas TK, Haque Z, Ibrahim B. Association of Sex, Age, and Comorbidities with Mortality in COVID-19 Patients: A Systematic Review and Meta-Analysis. *Intervirology* 2020: 1-12. - 5. Biswas M. Effects of Sex, Age and Comorbidities on the Risk of Infection and Death Associated with COVID-19: A Meta-Analysis of 47807 Confirmed Cases. *Lancet* 2020. - 6. Chang TH, Chou CC, Chang LY. Effect of obesity and body mass index on coronavirus disease 2019 severity: A systematic review and meta-analysis. *Obesity reviews : an official journal of the International Association for the Study of Obesity* 2020. - 7. Chen Y, Gong X, Wang L, Guo J. Effects of hypertension, diabetes and coronary heart disease on COVID-19 diseases severity: a systematic review and meta-analysis. *MedRxiv* 2020. - 8. Cheruiyot I, Kipkorir V, Ngure B, Misiani M, Munguti J. Cancer is associated with coronavirus disease (COVID-19) severity and mortality: A pooled analysis. *The American Journal of Emergency Medicine* 2020. - 9. Chidambaram V, Tun NL, Haque W, et al. Factors Associated with Disease Severity and Mortality among Patients with Coronavirus Disease 2019: A Systematic Review and Meta-Analysis. medRxiv; 2020. - 10. Chu Y, Yang J, Shi J, Zhang P, Wang X. Obesity is associated with increased severity of disease in COVID-19 pneumonia: a systematic review and meta-analysis. *European journal of medical research* 2020; **25**(1): 64. - 11. Das P, Samad N, Seidu A-A, Aboagye RG, Tetteh JK, Ahinkorah BO. Obesity as a Predictor for Adverse Outcomes Among COVID-19 Patients: A Meta-Analysis. ResearchSquare; 2020. - 12. de Almeida-Pititto B, Dualib PM, Zajdenverg L, et al. Severity and mortality of COVID 19 in patients with diabetes, hypertension and cardiovascular disease: a meta-analysis. *Diabetology & metabolic syndrome* 2020: **12**: 75. - 13. Degarege A, Naveed Z, Kabayundo J, Brett-Major D. Risk factors for severe illness and death in COVID-19: a systematic review and meta-analysis. *medRxiv* 2020. - 14. Dorjee K, Kim H, Bonomo E, Dolma R. Prevalence and predictors of death and severe disease in patients hospitalized due to COVID-19: A comprehensive systematic review and meta-analysis of 77 studies and 38,000 patients. *PloS one* 2020; **15**(12): e0243191. - 15. Du Y, Lv Y, Zha W, Zhou N, Hong X. Association of Body mass index (BMI) with Critical COVID-19 and in-hospital Mortality: a dose-response meta-analysis. *Metabolism* 2020: 154373. - 16. Elgohary G. The risk and prognosis of COVID-19 infection in cancer patients: A systematic review and meta-analysis. *Hematology/Oncology and Stem Cell Therapy* 2020. - 17. Figliozzi S, Masci PG, Ahmadi N, et al. Predictors of Adverse Prognosis in Covid-19: A Systematic Review and Meta-analysis. *European journal of clinical investigation* 2020: e13362. - 18. Florez-Perdomo WA, Serrato-Vargas SA, Bosque-Varela P, et al. Relationship between the history of cerebrovascular disease and mortality in COVID-19 patients: a systematic review and meta-analysis. *Clinical Neurology and Neurosurgery* 2020: 106183. - 19. Földi M, Farkas N, Kiss S, et al. Obesity is a risk factor for developing critical condition in COVID-19 patients: A systematic review and meta-analysis. *Obesity reviews : an official journal of the International Association for the Study of Obesity* 2020. - 20. Gao Y, Liu M, Shi S, et al. Cancer is associated with the severity and mortality of patients with COVID-19: a systematic review and meta-analysis. *medRxiv* 2020: 2020.05.01.20087031. - 21. Giannakoulis VG, Papoutsi E, Siempos, II. Effect of Cancer on Clinical Outcomes of Patients With COVID-19: A Meta-Analysis of Patient Data. *JCO global oncology* 2020; **6**: 799-808. - 22. Guo L, Shi Z, Zhang Y, et al. Comorbid diabetes and the risk of disease severity or death among 8807 COVID-19 patients in China: a meta-analysis. *Diabetes Research and Clinical Practice* 2020: 108346. - 23. Hariyanto TI, Putri C, Arisa J, Situmeang RFV, Kurniawan A. Dementia and outcomes from coronavirus disease 2019 (COVID-19) pneumonia: A Systematic Review and Meta-Analysis. *Archives of gerontology and geriatrics* 2020: 104299. - 24. Hessami A, Shamshirian A, Heydari K, Alizadeh-Navaei R, Moosazadeh M, Abrotan S. Cardiovascular Diseases and COVID-19 Mortality and Intensive Care Unit Admission: A Systematic Review and Meta-analysis. *MedRxiv* 2020. - 25. Huang Y, Lu Y, Huang Y-M, et al. Obesity in patients with COVID-19: a systematic review and meta-analysis. *Metabolism: clinical and experimental* 2020; **113**: 154378-. - 26. Hussain S, Baxi H, Chand Jamali M, Nisar N, Hussain MS. Burden of diabetes mellitus and its impact on COVID-19 patients: A meta-analysis of real-world evidence. *Diabetes & Metabolic Syndrome: Clinical Research & Reviews* 2020. - 27. Islam MS, Barek MA, Aziz MA, Aka TD, Jakaria M. Association of age, sex, comorbidities, and clinical symptoms with the severity and mortality of COVID-19 cases: a meta-analysis with 85 studies and 67299 cases. MedRxiv 2020. - 28. Izcovich A, Ragusa M. Prognostic Factors for Severity and Mortality in Patients Infected with COVID-19: A Systematic Review. *SSRN* 2020. - 29. Kahathuduwa C, Dhanasekara C, Chin S-H. Severity and case fatality rates of COVID-19: a systematic review, meta-analysis and an exploratory meta-regression of risk factors. *Lancet* 2020. - 30. Khan M, Khan MN, Mustagir MG, Rana J, Islam MS, Kabir MI. Effects of underlying morbidities on the occurrence of deaths in COVID-19 patients: A systematic review and meta-analysis. *medRxiv* 2020. - 31. Khunti K, Singh AK, Gillies CL, et al. The prevalence of comorbidities and their association with mortality in patients with COVID-19: A Systematic Review and Meta-analysis. *Lancet Diabetes Endocrinol* 2020. - 32. Kovalic AJ, Satapathy SK, Thuluvath PJ. Prevalence of chronic liver disease in patients with COVID-19 and their clinical outcomes: a systematic review and meta-analysis. *Hepatology international* 2020: 1-9. - 33. Kumar A, Arora A, Sharma P, et al. Clinical Features of COVID-19 and Factors Associated with Severe Clinical Course: A Systematic Review and Meta-Analysis. *Ssrn* 2020a: 3566166. - 34. Kumar A, Arora A, Sharma P, et al. Is diabetes mellitus associated with mortality and severity of COVID-19? A meta-analysis. *Diabetes and Metabolic Syndrome: Clinical Research and Reviews* 2020b; **14**(4): 535-45. - 35. Li B, Yang J, Zhao F, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. *Clinical Research in Cardiology* 2020; **109**(5): 531-8. - 36. Li J, Huang DQ, Zou B, et al. Epidemiology of COVID-19: A Systematic Review and Meta-analysis of Clinical Characteristics, Risk factors and Outcomes. *Journal of medical virology* 2020. - 37. Li X, Guan B, Su T, et al. Impact of cardiovascular disease and cardiac injury on in-hospital mortality in patients with COVID-19: a systematic review and meta-analysis. *Heart (British Cardiac Society)* 2020. - 38. Lippi G, Wong J, Henry BM. Hypertension in patients with coronavirus disease 2019 (COVID-19): A pooled analysis. *Polish Archives of Internal Medicine* 2020; **130**(4): 304-9. - 39. Liu H, Chen S, Liu M, Nie H, Lu H. Comorbid Chronic Diseases are Strongly Correlated with Disease Severity among COVID-19 Patients: A Systematic Review and Meta-Analysis. *Aging and disease* 2020; **11**(3): 668-78. - 40. Liu N, Sun J, Wang X, Zhao M, Huang Q, Li H. The Impact of Dementia on the Clinical Outcome of COVID-19: A Systematic Review and Meta-Analysis. *Journal of Alzheimer's disease: JAD* 2020. - 41. Liu Y, Lu H, Wang W, Liu Q, Zhu C. Clinical risk factors for mortality in patients with cancer and COVID-19: a systematic review and meta-analysis of recent observational studies. *Expert review of anticancer therapy* 2020. - 42. Liu Y-F, Zhang Z, Pan X-L, et al. The Chronic Kidney Disease and Acute Kidney Injury Involvement in COVID-19 Pandemic: A Systematic Review and Meta-analysis. *MedRxiv* 2020. - 43. Luo L, Fu M, Li Y, et al. The potential association between common comorbidities and severity and mortality of coronavirus disease 2019: A pooled analysis. *Clinical Cardiology* 2020; **n/a**(n/a). - 44. Malik P, Patel U, Patel K, et al. Obesity a predictor of outcomes of COVID-19 hospitalized patients- A systematic Review and Meta-Analysis. *Journal of medical virology* 2020. - 45. Mantovani A, Byrne CD, Zheng M-H, Targher G. Diabetes as a risk factor for greater COVID-19 severity and in-hospital death: a meta-analysis of observational studies. *Nutrition, Metabolism and Cardiovascular Diseases* 2020. - 46. Matsushita K, Ding N, Kou M, et al. The relationship of COVID-19 severity with cardiovascular disease and its traditional risk factors: A systematic review and meta-analysis. *MedRxiv* 2020. - 47. Mehraeen E, Karimi A, Barzegary A, et al. Predictors of mortality in patients with COVID-19 a systematic review. *European Journal of Integrative Medicine* 2020: 101226. - 48. Mellor M, Bast A, Jones N, et al. Risk of adverse COVID-19 outcomes for people living with HIV: a rapid review and meta-analysis. *medRxiv* 2020. - 49. Meng M, Zhao Q, Kumar R, Bai C, Deng Y, Wan B. Impact of cardiovascular and metabolic diseases on the severity of COVID-19: a systematic review and meta-analysis. *Aging* 2020; **12**. - 50. Mesas AE, Cavero-Redondo I, Álvarez-Bueno C, et al. Predictors of in-hospital COVID-19 mortality: A comprehensive systematic review and meta-analysis exploring differences by age, sex and health conditions. *PloS one* 2020; **15**(11): e0241742. - 51. Momtazmanesh S, Shobeiri P, Hanaei S, Mahmoud-Elsayed H, Dalvi B, Malakan Rad E. Cardiovascular disease in COVID-19: a systematic review and meta-analysis of 10,898 patients and
proposal of a triage risk stratification tool. *Egypt Heart J* 2020; **72**(1): 41-. - 52. Moula AI, Micali LR, Matteucci F, et al. Quantification of Death Risk in Relation to Sex, Pre-Existing Cardiovascular Diseases and Risk Factors in COVID-19 Patients: Let's Take Stock and See Where We Are. *Journal of clinical medicine* 2020; **9**(9). - 53. Nandy K, Salunke A, Pathak SK, et al. Coronavirus disease (COVID-19): A systematic review and meta-analysis to evaluate the impact of various comorbidities on serious events. *Diabetes & Metabolic Syndrome: Clinical Research & Reviews* 2020. - 54. Noor FM, Islam MM. Prevalence and Associated Risk Factors of Mortality Among COVID-19 Patients: A Meta-Analysis. *Journal of community health* 2020. - 55. Ofori-Asenso R, Ogundipe O, Agyeman AA, et al. Cancer is associated with severe disease in COVID-19 patients: a systematic review and meta-analysis. *Ecancermedical science* 2020; **14**: 1047. - 56. Palaiodimos L, Chamorro-Pareja N, Karamanis D, et al. Diabetes is associated with increased risk for in-hospital mortality in patients with COVID-19: a systematic review and meta-analysis comprising 18,506 patients. *MedRxiv* 2020. - 57. Pan L, Huang P, Xie X, Xu J, Guo D, Jiang Y. Metabolic associated fatty liver disease increases the severity of COVID-19: A meta-analysis. *Digestive and Liver Disease* 2020. - 58. Park R, Chidharla A, Mehta K, Sun W, Wulff-Burchfield E, Kasi A. Sex-bias in COVID-19-associated illness severity and mortality in cancer patients: A systematic review and meta-analysis. *EClinicalMedicine* 2020: 100519. - 59. Park R, Lee SA, Kim SY, de Melo AC, Kasi A. Association of active oncologic treatment and risk of death in cancer patients with COVID-19: a systematic review and meta-analysis of patient data. *Acta oncologica* (*Stockholm, Sweden*) 2020: 1-7. - 60. Parohan M, Yaghoubi S, Seraji A, Javanbakht MH, Sarraf P, Djalali M. Risk factors for mortality in patients with Coronavirus disease 2019 (COVID-19) infection: a systematic review and meta-analysis of observational studies. *The aging male : the official journal of the International Society for the Study of the Aging Male* 2020: 1-9. - 61. Parveen R, Sehar N, Bajpai R, Bharal Agarwal N. Association of diabetes and hypertension with disease severity in covid-19 patients: a systematic literature review and exploratory meta-analysis. *Diabetes research and clinical practice* 2020: 108295. - 62. Patel U, Malik P, Shah D, Patel A, Dhamoon M, Jani V. Pre-existing cerebrovascular disease and poor outcomes of COVID-19 hospitalized patients: a meta-analysis. *Journal of neurology* 2020a: 1-8. - 63. Patel U, Malik P, Usman MS, et al. Age-Adjusted Risk Factors Associated with Mortality and Mechanical Ventilation Utilization Amongst COVID-19 Hospitalizations—a Systematic Review and Meta-Analysis. *SN Comprehensive Clinical Medicine* 2020b. - 64. Popkin BM, Du S, Green WD, et al. Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. *Obesity reviews : an official journal of the International Association for the Study of Obesity* 2020. - 65. Pranata R, Supriyadi R, Huang I, et al. The Association Between Chronic Kidney Disease and New Onset Renal Replacement Therapy on the Outcome of COVID-19 Patients: A Meta-analysis. *Clinical Medicine Insights: Circulatory, Respiratory and Pulmonary Medicine* 2020; **14**. - 66. Pranata R, Soeroto AY, Huang I, et al. Effect of chronic obstructive pulmonary disease and smoking on the outcome of COVID-19. *The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease* 2020; **24**(8): 838-43. - 67. Pranata R, Huang I, Raharjo SB. Incidence and impact of cardiac arrhythmias in coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. *Indian Pacing and Electrophysiology Journal* 2020. - 68. Pranata R, Lim MA, Huang I, Raharjo SB, Lukito AA. Hypertension is associated with increased mortality and severity of disease in COVID-19 pneumonia: A systematic review, meta-analysis and meta-regression. *Journal of the renin-angiotensin-aldosterone system: JRAAS* 2020a; **21**(2): 1470320320926899. - 69. Pranata R, Lim MA, Yonas E, et al. Body Mass Index and Outcome in Patients with COVID-19: A Dose-Response Meta-Analysis. *Diabetes & Metabolism* 2020b. - 70. Rahman A, Sathi NJ. Risk Factors of the Severity of COVID-19: A Meta-Analysis. *MedRxiv* 2020. - 71. Roncon L, Zuin M, Rigatelli G, Zuliani G. Diabetic patients with COVID-19 infection are at higher risk of ICU admission and poor short-term outcome. *Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology* 2020; **127**: 104354. - 72. Sabatino J, De Rosa S, Di Salvo G, Indolfi C. Impact of cardiovascular risk profile on COVID-19 outcome. A meta-analysis. *PloS one* 2020; **15**(8): e0237131. - 73. Salunke AA, Nandy K, Pathak SK, et al. Impact of COVID -19 in cancer patients on severity of disease and fatal outcomes: A systematic review and meta-analysis. *Diabetes & Metabolic Syndrome: Clinical Research & Reviews* 2020. - 74. Sanchez-Ramirez DC, Mackey D. Underlying respiratory diseases, specifically COPD, and smoking are associated with severe COVID-19 outcomes: A systematic review and meta-analysis. *Respiratory Medicine* 2020: 106096. - 75. Sepandi M, Taghdir M, Alimohamadi Y, Afrashteh S, Hosamirudsari H. Factors Associated with Mortality in COVID-19 Patients: A Systematic Review and Meta-Analysis. *Iranian journal of public health* 2020; **49**(7): 1211-21. - 76. Shang L, Shao M, Guo Q, et al. Diabetes Mellitus is Associated with Severe Infection and Mortality in Patients with COVID-19: A Systematic Review and Meta-analysis. *Archives of Medical Research* 2020. - 77. Shi C, Wang L, Ye J, et al. Predictors of mortality in patients with coronavirus disease 2019: a systematic review and meta-analysis. ResearchSquare; 2020. - 78. Singh AK, Jena A, Kumar MP, Sharma V, Sebastian S. Risk and outcomes of coronavirus disease (COVID-19) in patients with inflammatory bowel disease: a systematic review and meta-analysis. *United European gastroenterology journal* 2020: 2050640620972602. - 79. Soeroto AY, Soetedjo NN, Purwiga A, et al. Effect of increased BMI and obesity on the outcome of COVID-19 adult patients: A systematic review and meta-analysis. *Diabetes & Metabolic Syndrome: Clinical Research & Reviews* 2020; **14**(6): 1897-904. - 80. Sreenivasan J, Khan MS, Anker SD, et al. Cardiovascular Risk Factors and Complications in Patients Infected with COVID-19: A Systematic Review. *Lancet*. - 81. Ssentongo P, Ssentongo AE, Heilbrunn ES, Ba DM, Chinchilli VM. Association of cardiovascular disease and 10 other pre-existing comorbidities with COVID-19 mortality: A systematic review and meta-analysis. *PloS one* 2020; **15**(8): e0238215. - 82. Su Q, Hu J-x, Lin H-s, et al. Prevalence and risks of severe events for cancer patients with COVID-19 infection: a systematic review and meta-analysis. *medrxiv* 2020. - 83. Sze S, Pan D, Nevill CR, et al. Ethnicity and clinical outcomes in COVID-19: A systematic review and meta-analysis. *EClinicalMedicine* 2020: 100630. - 84. Tabrizi R, Lankarani KB, Nowrouzi-sohrabi P, et al. The role of comorbidities and clinical predictors of severe disease in COVID-19: a systematic review and meta-analysis. *MedRxiv* 2020. - 85. Tamara A, Tahapary DL. Obesity as a predictor for a poor prognosis of COVID-19: A systematic review. *Diabetes & Metabolic Syndrome: Clinical Research & Reviews* 2020. - 86. Tamuzi JL, Ayele BT, Shumba CS, et al. Implications of COVID-19 in high burden countries for HIV/TB: A systematic review of evidence. *BMC infectious diseases* 2020; **20**(1): 744. - 87. Tavan H, Shams M, Karimian M, Kalvandi G, Borji M. An evaluation on the frequencies of underlying diseases and symptoms along with the mortality rate of COVID-19, a systematic review and meta-analysis. *Lancet* 2020. - 88. Tian W, Jiang W, Yao J, et al. Predictors of mortality in hospitalized COVID-19 patients: A systematic review and meta-analysis. *Journal of medical virology* 2020; **92**(10): 1875-83. - 89. Tian Y, Qiu X, Wang C, et al. Cancer associates with risk and severe events of COVID-19: A systematic review and meta-analysis. *International journal of cancer* 2020. - 90. Tian Y, Wu Q, Li, et al. Distinct symptoms and underlying comorbidities with latitude and longitude in COVID-19: A systematic review and meta-analysis. ResearchSquare; 2020. - 91. Toraih EA, Elshazli RM, Hussein MH, et al. Association of cardiac biomarkers and comorbidities with increased mortality, severity, and cardiac injury in COVID-19 patients: A meta-regression and Decision tree analysis. *Journal of medical virology* 2020. - 92. Varikasuvu SR, Dutt N, Thangappazham B, Varshney S. Diabetes and COVID-19: A pooled analysis related to disease severity and mortality. *Primary Care Diabetes* 2020. - 93. Venkatesulu BP, Chandrasekar VT, Girdhar P, et al. A systematic review and meta-analysis of cancer patients affected by a novel coronavirus. *medRxiv* 2020. - 94. Vijenthira A, Gong IY, Fox TA, et al. Outcomes of patients with hematologic malignancies and COVID-19: A systematic review and meta-analysis of 3377 patients. *Blood* 2020. - 95. Fernandez Villalobos NV, Ott JJ, Klett-Tammen CJ, et al. Quantification of the association between predisposing health conditions, demographic, and behavioural factors with hospitalisation, intensive care unit admission, and death from COVID-19: a systematic review and meta-analysis. medRxiv; 2020. - 96. Wang B, Li R, Lu Z, Huang Y. Does comorbidity increase the risk of patients with COVID-19: evidence from meta-analysis. *Aging* 2020; **12**. - 97. Wang X, Fang X, Cai Z, et al. Comorbid Chronic Diseases and Acute Organ Injuries Are Strongly Correlated with Disease Severity and Mortality among COVID-19 Patients: A
Systemic Review and Meta-Analysis. *Research (Washington, DC)* 2020; **2020**: 2402961. - 98. Wang Y, Ao G, Qi X, Xie B. The association between COVID-19 and asthma: a systematic review and meta-analysis. *Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology* 2020. - 99. Wang Y, Chen J, Chen W, et al. Does Asthma Increase the Mortality of Patients with COVID-19?: A Systematic Review and Meta-Analysis. *International archives of allergy and immunology* 2020: 1-7. - 100. Wang Z, Deng H, Ou C, et al. Clinical symptoms, comorbidities and complications in severe and non-severe patients with COVID-19: A systematic review and meta-analysis without cases duplication. *Medicine* 2020; **99**(48): e23327. - 101. Wingert A, Pillay J, Gates M, et al. Risk factors for severe outcomes of COVID-19: a rapid review. *medRxiv* 2020: 2020.08.27.20183434. - 102. Wu J, Zhang J, Sun X, et al. Influence of diabetes mellitus on the severity and fatality of SARS-CoV-2 infection. *Diabetes, obesity & metabolism* 2020. - 103. Wu ZH, Tang Y, Cheng Q. Diabetes increases the mortality of patients with COVID-19: a meta-analysis. *Acta diabetologica* 2020. - 104. Xu J, Xiao W, Liang X, et al. The Association of Cerebrovascular Disease with Adverse Outcomes in COVID-19 Patients: A Meta-Analysis Based on Adjusted Effect Estimates. *Journal of Stroke and Cerebrovascular Diseases* 2020; **29**(11): 105283. - 105. Xu L, Mao Y, Chen G. Risk factors for 2019 novel coronavirus disease (COVID-19) patients progressing to critical illness: a systematic review and meta-analysis. *Aging* 2020; **12**. - 106. Yang J, Hu J, Zhu C. Obesity aggravates COVID-19: a systematic review and meta-analysis. *Journal of medical virology* 2020. - 107. Yang J, Tian C, Chen Y, Zhu C, Chi H, Li J. Obesity aggravates COVID-19: an updated systematic review and meta-analysis. *Journal of medical virology* 2020. - 108. Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. *International Journal of Infectious Diseases* 2020. - 109. Yang S, Chen C, Yan D, et al. Risk factors associated with fatal outcomes of novel coronavirus infection pneumonia (COVID-19): A systematic review and meta-analysis. *ResearchSquare* 2020. - 110. Yekedüz E, Utkan G, Ürün Y. A Systematic Review and Meta-Analysis: The Effect of Active Cancer Treatment on Severity of COVID-19. *European Journal of Cancer* 2020. - 111. Yonas E, Alwi I, Pranata R, et al. Effect of heart failure on the outcome of COVID-19 A meta analysis and systematic review. *The American Journal of Emergency Medicine* 2020. - 112. Youssef M, Hussein M, Attia AS, et al. COVID-19 and Liver Dysfunction: a systematic review and meta-analysis of retrospective studies. *Journal of medical virology* 2020. - 113. Yu JN, Wu BB, Yang J, Lei XL, Shen WQ. Cardio-Cerebrovascular Disease is Associated With Severity and Mortality of COVID-19: A Systematic Review and Meta-Analysis. *Biological research for nursing* 2020: 1099800420951984. - 114. Zaki N, Mohamed EA, Ibrahim S, Khan G. The influence of comorbidity on the severity of COVID-19 disease: A systematic review and analysis. *ResearchSquare* 2020. - 115. Zhang H, Han H, He T, et al. Clinical Characteristics and Outcomes of COVID-19-Infected Cancer Patients: A Systematic Review and Meta-Analysis. *Journal of the National Cancer Institute* 2020. - 116. Zhang J, Wu J, Sun X, et al. Associations of hypertension with the severity and fatality of SARS-CoV-2 infection: A meta-analysis. *Epidemiology and infection* 2020: 1-19. - 117. Zhao Q, Meng M, Kumar R, et al. The impact of COPD and smoking history on the severity of Covid-19: A systemic review and meta-analysis. *Journal of medical virology* 2020. - 118. Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. *Journal of Infection* 2020. - 119. Zhou Y, Yang Q, Chi J, et al. Comorbidities and the risk of severe or fatal outcomes associated with coronavirus disease 2019: A systematic review and meta-analysis. *International Journal of Infectious Diseases* 2020. - 120. Zuin M, Guasti P, Roncon L, Cervellati C, Zuliani G. Dementia and the risk of death in elderly patients with COVID-19 infection: Systematic review and meta-analysis. *International Journal of Geriatric Psychiatry* 2020. - 121. Boulle A, Davies M-A, Hussey H, et al. Risk factors for COVID-19 death in a population cohort study from the Western Cape Province, South Africa. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America* 2020: ciaa1198. - 122. Al-Sabah S, Al-Haddad M, Al-Youha S, Jamal M, Almazeedi S. COVID-19: Impact of obesity and diabetes on disease severity. *Clinical Obesity* 2020; **10**(6): e12414. - 123. Rastad H, Karim H, Ejtahed H-S, et al. Risk and predictors of in-hospital mortality from COVID-19 in patients with diabetes and cardiovascular disease. *Diabetology & metabolic syndrome* 2020; **12**(1): 57. - 124. Al-Salameh A, Lanoix JP, Bennis Y, et al. Characteristics and outcomes of COVID-19 in hospitalized patients with and without diabetes. *Diabetes Metab Res Rev* 2020: e3388. - 125. Amit M, Sorkin A, Chen J, et al. Clinical Course and Outcomes of Severe Covid-19: A National Scale Study. *Journal of clinical medicine* 2020; **9**(7). - 126. Bellan M, Patti G, Hayden E, et al. Fatality rate and predictors of mortality in an Italian cohort of hospitalized COVID-19 patients. *Scientific Reports* 2020; **10**(1): 20731. - 127. Berenguer J, Ryan P, Rodríguez-Baño J, et al. Characteristics and predictors of death among 4035 consecutively hospitalized patients with COVID-19 in Spain. *Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases* 2020; **26**(11): 1525-36. - 128. Bezzio C, Saibeni S, Variola A, et al. Outcomes of COVID-19 in 79 patients with IBD in Italy: an IG-IBD study. *Gut* 2020; **69**(7): 1213-7. - 129. Bianchetti A, Rozzini R, Guerini F, et al. Clinical Presentation of COVID19 in Dementia Patients. *J Nutr Health Aging* 2020; **24**(6): 560-2. - 130. Borghesi A, Zigliani A, Golemi S, et al. Chest X-ray severity index as a predictor of in-hospital mortality in coronavirus disease 2019: A study of 302 patients from Italy. *International Journal of Infectious Diseases* 2020; **96**: 291-3. - 131. Burn E, Tebe C, Fernandez-Bertolin S, et al. The natural history of symptomatic COVID-19 in Catalonia, Spain: a multi-state model including 109,367 outpatient diagnoses, 18,019 hospitalisations, and 5,585 COVID-19 deaths among 5,627,520 people. *medRxiv* 2020: 2020.07.13.20152454. - 132. Busetto L, Bettini S, Fabris R, et al. Obesity and COVID-19: an Italian snapshot. *Obesity (Silver Spring)* 2020. - 133. Cariou B, Hadjadj S, Wargny M, et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study. *Diabetologia* 2020; **63**(8): 1500-15. - 134. Carter B, Collins JT, Barlow-Pay F, et al. Nosocomial COVID-19 infection: examining the risk of mortality. The COPE-Nosocomial Study (COVID in Older PEople). *J Hosp Infect* 2020; **106**(2): 376-84. - 135. Caussy C, Pattou F, Wallet F, et al. Prevalence of obesity among adult inpatients with COVID-19 in France. *Lancet Diabetes Endocrinol* 2020. - 136. Ciardullo S, Zerbini F, Perra S, et al. Impact of diabetes on COVID-19-related in-hospital mortality: a retrospective study from Northern Italy. *J Endocrinol Invest* 2020. - 137. Ciceri F, Castagna A, Rovere-Querini P, et al. Early predictors of clinical outcomes of COVID-19 outbreak in Milan, Italy. *Clin Immunol* 2020; **217**: 108509. - 138. Conversano A, Melillo F, Napolano A, et al. Renin-Angiotensin-Aldosterone System Inhibitors and Outcome in Patients With SARS-CoV-2 Pneumonia: A Case Series Study. *Hypertension* 2020; **76**(2): e10-e2. - 139. Di Castelnuovo A, Bonaccio M, Costanzo S, et al. Common cardiovascular risk factors and in-hospital mortality in 3,894 patients with COVID-19: survival analysis and machine learning-based findings from the multicentre Italian CORIST Study. *Nutr Metab Cardiovasc Dis* 2020; **30**(11): 1899-913. - 140. Docherty AB, Harrison EM, Green CA, et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. *Bmj* 2020; **369**: m1985. - 141. Galloway JB, Norton S, Barker RD, et al. A clinical risk score to identify patients with COVID-19 at high risk of critical care admission or death: An observational cohort study. *Journal of Infection* 2020; **81**(2): 282-8. - 142. Geretti AM, Stockdale AJ, Kelly SH, et al. Outcomes of COVID-19 related hospitalization among people with HIV in the ISARIC WHO Clinical Characterization Protocol (UK): a prospective observational study. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America* 2020. - 143. Giacomelli A, Ridolfo AL, Milazzo L, et al. 30-day mortality in patients hospitalized with COVID-19 during the first wave of the Italian epidemic: a prospective cohort study. *medRxiv* 2020: 2020.05.02.20088336. - 144. Goicoechea M, Sánchez Cámara LA, Macías N, et al. COVID-19: clinical course and outcomes of 36 hemodialysis patients in Spain. *Kidney international* 2020; **98**(1): 27-34. - 145. Grasselli G, Greco M, Zanella A, et al. Risk Factors Associated With Mortality Among Patients With COVID-19 in Intensive Care Units in Lombardy, Italy. *JAMA internal medicine* 2020; **180**(10): 1345-55. - 146. Halasz G, Leoni ML, Villani GQ, Nolli M, Villani M. Obesity, overweight and survival in critically ill patients with SARS-CoV-2 pneumonia: is there an obesity paradox? Preliminary results from Italy. *Eur J Prev Cardiol* 2020: 2047487320939675. - 147. Hewitt J, Carter B,
Vilches-Moraga A, et al. The effect of frailty on survival in patients with COVID-19 (COPE): a multicentre, European, observational cohort study. *The Lancet Public Health* 2020; **5**(8): e444-e51. - 148. Khalil K, Agbontaen K, McNally D, et al. Clinical characteristics and 28-day mortality of medical patients admitted with COVID-19 to a central London teaching hospital. *The Journal of infection* 2020; **81**(3): e85-e9. - 149. Lee LYW, Cazier J-B, Angelis V, et al. COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: a prospective cohort study. *The Lancet* 2020; **395**(10241): 1919-26. - 150. Lee LYW, Cazier J-B, Starkey T, et al. COVID-19 prevalence and mortality in patients with cancer and the effect of primary tumour subtype and patient demographics: a prospective cohort study. *The Lancet Oncology* 2020; **21**(10): 1309-16. - 151. Merzon E, Tworowski D, Gorohovski A, et al. Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: an Israeli population-based study. *FEBS J* 2020: 10.1111/febs.15495. - 152. Passamonti F, Cattaneo C, Arcaini L, et al. Clinical characteristics and risk factors associated with COVID-19 severity in patients with haematological malignancies in Italy: a retrospective, multicentre, cohort study. *The Lancet Haematology* 2020; **7**. - 153. Perez-Guzman PN, Daunt A, Mukherjee S, et al. Clinical characteristics and predictors of outcomes of hospitalized patients with COVID-19 in a multi-ethnic London NHS Trust: a retrospective cohort study. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America* 2020. - 154. Pinato DJ, Zambelli A, Aguilar-Company J, et al. Clinical portrait of the SARS-CoV-2 epidemic in European cancer patients. *Cancer Discov* 2020; **10**(10): 1465-74. - 155. Regina J, Papadimitriou-Olivgeris M, Burger R, et al. Epidemiology, risk factors and clinical course of SARS-CoV-2 infected patients in a Swiss university hospital: An observational retrospective study. *PloS one* 2020; **15**(11): e0240781. - 156. Reilev M, Kristensen KB, Pottegård A, et al. Characteristics and predictors of hospitalization and death in the first 11 122 cases with a positive RT-PCR test for SARS-CoV-2 in Denmark: a nationwide cohort. *Int J Epidemiol* 2020: dyaa140. - 157. Rivera-Izquierdo M, Del Carmen Valero-Ubierna M, R-delAmo JL, et al. Sociodemographic, clinical and laboratory factors on admission associated with COVID-19 mortality in hospitalized patients: A retrospective observational study. *PloS one* 2020; **15**(6): e0235107-e. - 158. Rossi A, Gottin L, Donadello K. Obesity as a risk factor for unfavourable outcomes in critically ill patients affected by Covid-19 related respiratory failure. *Research Square* 2020. - 159. Rossi PG, Marino M, Formisano D, Venturelli F, Vicentini M, Grilli R. Characteristics and outcomes of a cohort of SARS-CoV-2 patients in the Province of Reggio Emilia, Italy. *PloS one* 2020; **15(8)**: e0238281. - 160. Rottoli M, Bernante P, Belvedere A, et al. How important is obesity as a risk factor for respiratory failure, intensive care admission and death in hospitalised COVID-19 patients? Results from a single Italian centre. *European journal of endocrinology* 2020. - Russell B, Moss C, Papa S, et al. Factors Affecting COVID-19 Outcomes in Cancer Patients: A First Report From Guy's Cancer Center in London. *Frontiers in Oncology* 2020; **10**(1279). - 162. Sanchez-Pina JM, Rodríguez Rodriguez M, Castro Quismondo N, et al. Clinical course and risk factors for mortality from COVID-19 in patients with haematological malignancies. *European Journal of Haematology* 2020; **105**(5): 597-607. - 163. Sapey E, Gallier S, Mainey C, et al. Ethnicity and risk of death in patients hospitalised for COVID-19 infection in the UK: an observational cohort study in an urban catchment area. *BMJ Open Respiratory Research* 2020; **7**(1): e000644. - 164. Shah V, Ko Ko T, Zuckerman M, et al. Poor outcome and prolonged persistence of SARS-CoV-2 RNA in COVID-19 patients with haematological malignancies; King's College Hospital experience. *Br J Haematol* 2020; **190**(5): e279-e82. - 165. Simonnet A, Chetboun M, Poissy J, et al. High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation. *Obesity* (*Silver Spring*) 2020; **28**(7): 1195-9. - 166. Sisó-Almirall A, Kostov B, Mas-Heredia M, et al. Prognostic factors in Spanish COVID-19 patients: A case series from Barcelona. *PloS one* 2020; **15**(8): e0237960-e. - 167. Wendel Garcia P, Fumeaux T, Guerci P, et al. Prognostic factors associated with mortality risk and disease progression in 639 critically ill patients with COVID-19 in Europe: Initial report of the international RISC-19-ICU prospective observational cohort. *EClinicalMedicine* 2020; **25**: 100449. - 168. Yarza R, Bover M, Paredes D, et al. SARS-CoV-2 infection in cancer patients undergoing active treatment: analysis of clinical features and predictive factors for severe respiratory failure and death. *Eur J Cancer* 2020; **135**: 242-50. - 169. Antwi-Amoabeng D, Beutler B, Awad M, et al. Sociodemographic predictors of outcomes in COVID-19: examining the impact of ethnic disparities in Northern Nevada. *Cureus* 2020; **13(2)**: e13128. - 170. Argenziano M, Bruce S, Slater C. Characterization and Clinical Course of 1000 Patients with COVID-19 in New York: retrospective case series. *medrxiv* 2020: 10.1101. - 171. Azar KMJ, Shen Z, Romanelli RJ, et al. Disparities In Outcomes Among COVID-19 Patients In A Large Health Care System In California. *Health affairs (Project Hope)* 2020; **39**(7): 1253-62. - 172. Chhiba KD, Patel GB, Vu THT, et al. Prevalence and characterization of asthma in hospitalized and nonhospitalized patients with COVID-19. *J Allergy Clin Immunol* 2020; **146**(2): 307-14.e4. - 173. Chilimuri S, Sun H, Alemam A, et al. Predictors of Mortality in Adults Admitted with COVID-19: Retrospective Cohort Study from New York City. *West J Emerg Med* 2020; **21**(4): 779-84. - 174. Costa Monteiro AC, Suri R, Emeruwa IO, et al. Obesity and Smoking as Risk Factors for Invasive Mechanical Ventilation in COVID-19: a Retrospective, Observational Cohort Study. *PLOS ONE* 2020; **15(12)**: e0238552. - 175. Crouse AB, Grimes T, Li P, Might M, Ovalle F, Shalev A. Metformin Use Is Associated With Reduced Mortality in a Diverse Population With COVID-19 and Diabetes. *Frontiers in Endocrinology* 2021; **11**(1081). - 176. Cummings MJ, Baldwin MR, Abrams D, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. *Lancet* 2020. - 177. D'Silva KM, Serling-Boyd N, Wallwork R, et al. Clinical characteristics and outcomes of patients with coronavirus disease 2019 (COVID-19) and rheumatic disease: a comparative cohort study from a US 'hot spot'. *Annals of the Rheumatic Diseases* 2020; **79**(9): 1156-62. - 178. Ebinger JE, Achamallah N, Ji H, et al. Pre-existing traits associated with Covid-19 illness severity. *PloS one* 2020; **15**(7): e0236240-e. - 179. Gayam V, Chobufo MD, Merghani MA, Lamichhane S, Garlapati PR, Adler MK. Clinical characteristics and predictors of mortality in African-Americans with COVID-19 from an inner-city community teaching hospital in New York. *Journal of medical virology* 2020; **n/a**(n/a). - 180. Goyal P, Ringel JB, Rajan M, et al. Obesity and COVID-19 in New York City: A Retrospective Cohort Study. *Annals of internal medicine* 2020; **173**(10): 855-8. - 181. Gu T, Mack JA, Salvatore M, et al. COVID-19 outcomes, risk factors and associations by race: a comprehensive analysis using electronic health records data in Michigan Medicine. *medRxiv*: the preprint server for health sciences 2020: 2020.06.16.20133140. - 182. Gupta S, Hayek SS, Wang W, et al. Factors Associated With Death in Critically Ill Patients With Coronavirus Disease 2019 in the US. *JAMA internal medicine* 2020; **180**(11): 1-12. - 183. Harmouch F, Shah K, Hippen JT, Kumar A, Goel H. Is it all in the heart? Myocardial injury as major predictor of mortality among hospitalized COVID-19 patients. *Journal of medical virology* 2020; **n/a**(n/a). - Harrison SL, Fazio-Eynullayeva E, Lane DA, Underhill P, Lip GYH. Comorbidities associated with mortality in 31,461 adults with COVID-19 in the United States: A federated electronic medical record analysis. *PLOS Medicine* 2020; **17**(9): e1003321. - 185. Hashemi N, Viveiros K, Redd WD, et al. Impact of chronic liver disease on outcomes of hospitalized patients with COVID-19: A multicentre United States experience. *Liver international : official journal of the International Association for the Study of the Liver* 2020; **40**(10): 2515-21. - 186. Hur K, Price C, Gray E, et al. Factors Associated With Intubation and Prolonged Intubation in Hospitalized Patients With COVID-19. *Otolaryngology Head and Neck Surgery* 2020; **163**: 019459982092964. - 187. Imam Z, Odish F, Gill I, et al. Older age and comorbidity are independent mortality predictors in a large cohort of 1305 COVID-19 patients in Michigan, United States. *Journal of internal medicine* 2020; **288**(4): 469-76. - 188. Jun T, Nirenberg S, Kovatch P, Huang K-l. Sex-specificity of mortality risk factors among hospitalized COVID-19 patients in New York City: prospective cohort study. *medRxiv* 2020: 2020.07.29.20164640. - 189. Kabarriti R, Brodin NP, Maron MI, et al. Association of Race and Ethnicity With Comorbidities and Survival Among Patients With COVID-19 at an Urban Medical Center in New York. *JAMA Netw Open* 2020; **3**(9): e2019795-e. - 190. Kalligeros M, Shehadeh F, Mylona EK, et al. Association of Obesity with Disease Severity Among Patients with Coronavirus Disease 2019. *Obesity* 2020; **28**(7): 1200-4. - 191. Killerby M, Link-Gelles R, Haight S, et al. Characteristics Associated with
Hospitalization Among Patients with COVID-19 Metropolitan Atlanta, Georgia, March—April 2020. *MMWR Morbidity and mortality weekly report* 2020; **69**. - 192. Kim L, Garg S, O'Halloran A, et al. Risk Factors for Intensive Care Unit Admission and In-hospital Mortality Among Hospitalized Adults Identified through the US Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET). *Clinical Infectious Diseases* 2020. - 193. Klang E, Kassim G, Soffer S, Freeman R, Levin MA, Reich DL. Severe Obesity as an Independent Risk Factor for COVID-19 Mortality in Hospitalized Patients Younger than 50. *Obesity (Silver Spring)* 2020. - 194. Lieberman-Cribbin W, Rapp J, Alpert N, Tuminello S, Taioli E. The Impact of Asthma on Mortality in Patients With COVID-19. *Chest* 2020. - 195. Magleby R, Westblade LF, Trzebucki A, et al. Impact of SARS-CoV-2 Viral Load on Risk of Intubation and Mortality Among Hospitalized Patients with Coronavirus Disease 2019. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America* 2020: ciaa851. - 196. Mahdavinia M, Foster KJ, Jauregui E, et al. Asthma prolongs intubation in COVID-19. *J Allergy Clin Immunol Pract* 2020; **8**(7): 2388-91. - 197. McCarty TR, Hathorn KE, Redd WD, et al. How Do Presenting Symptoms and Outcomes Differ by Race/Ethnicity Among Hospitalized Patients with COVID-19 Infection? Experience in Massachusetts. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America* 2020: ciaa1245. - 198. Mehta V, Goel S, Kabarriti R, et al. Case Fatality Rate of Cancer Patients with COVID-19 in a New York Hospital System. *Cancer Discov* 2020. - 199. Mendy A, Apewokin S, Wells A, Morrow A. Factors Associated with Hospitalization and Disease Severity in a Racially and Ethnically Diverse Population of COVID-19 Patients. *medrxiv* 2020: 10.1101. - 200. Mikami T, Miyashita H, Yamada T, et al. Risk Factors for Mortality in Patients with COVID-19 in New York City. *Journal of general internal medicine* 2020: 1-10. - 201. Miyashita H, Kuno T. Prognosis of coronavirus disease 2019 (COVID-19) in patients with HIV infection in New York City. *HIV medicine* 2020. - 202. Miyashita H, Mikami T, Chopra N, et al. Do Patients with Cancer Have a Poorer Prognosis of COVID-19? An Experience in New York City. *Annals of Oncology* 2020. - 203. Miyashita S, Yamada T, Mikami T, Miyashita H, Chopra N, Rizk D. Impact of dementia on clinical outcomes in elderly patients with coronavirus 2019 (COVID-19): an experience in New York. *Geriatrics & Gerontology International* 2020; **20**(7): 732-4. - 204. Nakeshbandi M, Maini R, Daniel P, et al. The impact of obesity on COVID-19 complications: a retrospective cohort study. *International journal of obesity* (2005) 2020; **44**(9): 1832-7. - 205. Narain S, Stefanov DG, Chau AS, et al. Comparative Survival Analysis of Immunomodulatory Therapy for Coronavirus Disease 2019 Cytokine Storm. *Chest* 2020: S0012-3692(20)34901-1. - 206. Okoh AK, Sossou C, Dangayach NS, et al. Coronavirus disease 19 in minority populations of Newark, New Jersey. *Int J Equity Health* 2020; **19**(1): 93-. - 207. Palaiodimos L, Kokkinidis DG, Li W, et al. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. *Metabolism* 2020; **108**: 154262. - 208. Patel NG, Bhasin A, Feinglass JM, et al. Clinical Outcomes of Hospitalized Patients with COVID-19 on Therapeutic Anticoagulants. *medRxiv* 2020: 2020.08.22.20179911. - 209. Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. *Bmj* 2020; **369**: m1966. - 210. Pettit NN, MacKenzie EL, Ridgway J, et al. Obesity is Associated with Increased Risk for Mortality Among Hospitalized Patients with COVID-19. *Obesity (Silver Spring)* 2020. - 211. Price-Haywood EG, Burton J, Fort D, Seoane L. Hospitalization and Mortality among Black Patients and White Patients with Covid-19. *N Engl J Med* 2020. - 212. Rentsch CT, Kidwai-Khan F, Tate JP, et al. Covid-19 Testing, Hospital Admission, and Intensive Care Among 2,026,227 United States Veterans Aged 54-75 Years. *medRxiv*: the preprint server for health sciences 2020: 2020.04.09.20059964. - 213. Robilotti EV, Babady NE, Mead PA, et al. Determinants of COVID-19 disease severity in patients with cancer. *Nature Medicine* 2020; **26**(8): 1218-23. - 214. Salacup G, Lo KB, Gul F, et al. Characteristics and clinical outcomes of COVID-19 patients in an underserved-inner city population: A single tertiary center cohort. *Journal of medical virology* 2020; **n/a**(n/a). - 215. Seiglie J, Platt J, Cromer SJ, et al. Diabetes as a Risk Factor for Poor Early Outcomes in Patients Hospitalized With COVID-19. *Diabetes care* 2020; **43**(12): 2938-44. - 216. Shah P, Owens J, Franklin J, et al. Demographics, comorbidities and outcomes in hospitalized Covid-19 patients in rural southwest Georgia. *Annals of medicine* 2020; **52**(7): 354-60. - 217. Sigel K, Swartz T, Golden E, et al. Covid-19 and People with HIV Infection: Outcomes for Hospitalized Patients in New York City. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America* 2020: ciaa880. - 218. Singh S, Bilal M, Khan A, et al. Outcomes of COVID-19 in Patients with Obesity in United States: A Large Research Network Study. *SSRN Electronic Journal* 2020. - 219. Singh S, Khan A. Clinical Characteristics and Outcomes of Coronavirus Disease 2019 Among Patients With Preexisting Liver Disease in the United States: A Multicenter Research Network Study. *Gastroenterology* 2020; **159**(2): 768-71.e3. - 220. Singh S, Khan A, Chowdhry M, Bilal M, Kochhar GS, Clarke K. Risk of Severe Coronavirus Disease 2019 in Patients With Inflammatory Bowel Disease in the United States: A Multicenter Research Network Study. *Gastroenterology* 2020; **159**(4): 1575-8.e4. - 221. Smith AA, Fridling J, Ibrahim D, Porter PS, Jr. Identifying Patients at Greatest Risk of Mortality due to COVID-19: A New England Perspective. *West J Emerg Med* 2020; **21**(4): 785-9. - 222. Suleyman G, Fadel RA, Malette KM, et al. Clinical Characteristics and Morbidity Associated With Coronavirus Disease 2019 in a Series of Patients in Metropolitan Detroit. *JAMA Netw Open* 2020; **3**(6): e2012270-e. - 223. Tartof SY, Qian L, Hong V, et al. Obesity and Mortality Among Patients Diagnosed With COVID-19: Results From an Integrated Health Care Organization. *Annals of internal medicine* 2020; **173**(10): 773-81. - van Gerwen M, Alsen M, Little C, et al. Risk factors and outcomes of COVID-19 in New York City; a retrospective cohort study. *Journal of medical virology* 2020. - 225. Wang A-L, Zhong X, Hurd Y. Comorbidity and Sociodemographic determinants in COVID-19 Mortality in an US Urban Healthcare System. *medRxiv* 2020: 2020.06.11.20128926. - 226. Yehia BR, Winegar A, Fogel R, et al. Association of Race With Mortality Among Patients Hospitalized With Coronavirus Disease 2019 (COVID-19) at 92 US Hospitals. *JAMA Netw Open* 2020; **3**(8): e2018039-e. - 227. Zimmerman P, Stroever S, Burton T, et al. Mortality Associated With Intubation and Mechanical Ventilation in Patients with COVID-19. *medRxiv* 2020: 2020.08.13.20174524. - 228. Baqui P, Bica I, Marra V, Ercole A, van der Schaar M. Ethnic and regional variations in hospital mortality from COVID-19 in Brazil: a cross-sectional observational study. *The Lancet Global health* 2020; **8**(8): e1018-e26. - 229. Bello-Chavolla OY, Bahena-López JP, Antonio-Villa NE, et al. Predicting Mortality Due to SARS-CoV-2: A Mechanistic Score Relating Obesity and Diabetes to COVID-19 Outcomes in Mexico. *J Clin Endocrinol Metab* 2020; **105**(8): dgaa346. - 230. Carrillo-Vega MF, Salinas-Escudero G, García-Peña C, Gutiérrez-Robledo LM, Parra-Rodríguez L. Early estimation of the risk factors for hospitalization and mortality by COVID-19 in Mexico. *PloS one* 2020; **15**(9): e0238905. - 231. Denova-Gutiérrez E, Lopez-Gatell H, Alomia-Zegarra JL, et al. The Association of Obesity, Type 2 Diabetes, and Hypertension with Severe Coronavirus Disease 2019 on Admission Among Mexican Patients. *Obesity (Silver Spring, Md)* 2020; **28**(10): 1826-32. - 232. Escalera-Antezana JP, Lizon-Ferrufino NF, Maldonado-Alanoca A, et al. Risk factors for mortality in patients with Coronavirus Disease 2019 (COVID-19) in Bolivia: An analysis of the first 107 confirmed cases. *Le infezioni in medicina* 2020; **28**(2): 238-42. - 233. Giannouchos TV, Sussman RA, Mier JM, Poulas K, Farsalinos K. Characteristics and risk factors for COVID-19 diagnosis and adverse outcomes in Mexico: an analysis of 89,756 laboratory-confirmed COVID-19 cases. *The European respiratory journal* 2020. - 234. Murillo-Zamora E, Hernandez-Suarez CM. Survival in adult inpatients with COVID-19. *Public Health* 2020. - 235. Soares RdCM, Mattos LR, Raposo LM. Risk Factors for Hospitalization and Mortality due to COVID-19 in Espírito Santo State, Brazil. *Am J Trop Med Hyg* 2020; **103**(3): 1184-90. - 236. Solís P, Carreňo H. COVID-19 Fatality and Comorbidity Risk Factors among Diagnosed Patients in Mexico. *MedRxiv* 2020. - 237. Sousa GJB, Garces TS, Cestari VRF, Florêncio RS, Moreira TMM, Pereira MLD. Mortality and survival of COVID-19. *Epidemiology and infection* 2020; **148**: e123. - 238. Bi Q, Hong C, Meng J, et al. Characterizing clinical progression of COVID-19 among patients in Shenzhen, China: an observational cohort study. *medRxiv* 2020: 2020.04.22.20076190. - 239. Chen F, Sun W, Sun S, Li Z, Wang Z, Yu L. Clinical characteristics and risk factors for mortality among inpatients with COVID-19 in Wuhan, China. *Clinical and Translational Medicine* 2020; **10**(2): e40. - 240. Chen J,
Bai H, Liu J, et al. Distinct Clinical Characteristics and Risk Factors for Mortality in Female Inpatients With Coronavirus Disease 2019 (COVID-19): A Sex-stratified, Large-scale Cohort Study in Wuhan, China. *Clinical Infectious Diseases* 2020. - 241. Chen R, Liang W, Jiang M, et al. Risk Factors of Fatal Outcome in Hospitalized Subjects With Coronavirus Disease 2019 From a Nationwide Analysis in China. *Chest* 2020; **158**(1): 97-105. - 242. Dai M, Liu D, Liu M, et al. Patients with Cancer Appear More Vulnerable to SARS-CoV-2: A Multicenter Study during the COVID-19 Outbreak. *Cancer discovery* 2020; **10**(6): 783-91. - 243. Du R, Liang L, Yang C, et al. Patient Predisposition at Hospital Admission Indirectly Dictates Disease Severity, Clinical Course and Outcomes of COVID-19 Pneumonia Patients in Wuhan, China. *SSRN* 2020. - 244. Du RH, Liang LR, Yang CQ, et al. Predictors of Mortality for Patients with COVID-19 Pneumonia Caused by SARS-CoV-2: A Prospective Cohort Study. *The European respiratory journal* 2020. - 245. Feng Y, Ling Y, Bai T, et al. COVID-19 with Different Severity: A Multi-center Study of Clinical Features. *American journal of respiratory and critical care medicine* 2020. - 246. Gao C, Cai Y, Zhang K, et al. Association of hypertension and antihypertensive treatment with COVID-19 mortality: a retrospective observational study. *European heart journal* 2020; **41**(22): 2058-66. - 247. Gu T, Chu Q, Yu Z, et al. History of coronary heart disease increased the mortality rate of patients with COVID-19: a nested case–control study. *BMJ Open* 2020; **10**(9): e038976. - 248. Huang S, Wang J, Liu F, et al. COVID-19 patients with hypertension have more severe disease: a multicenter retrospective observational study. *Hypertension Research* 2020; **43**(8): 824-31. - 249. Hwang J-M, Kim J-H, Park J-S, Chang MC, Park D. Neurological diseases as mortality predictive factors for patients with COVID-19: a retrospective cohort study. *Neurol Sci* 2020; **41**(9): 2317-24. - 250. Kim MK, Jeon JH, Kim SW, et al. The Clinical Characteristics and Outcomes of Patients with Moderate-to-Severe Coronavirus Disease 2019 Infection and Diabetes in Daegu, South Korea. *Diabetes & metabolism journal* 2020; **44**(4): 602-13. - 251. Lee H-Y, Ahn J, Kang CK, et al. Association of Angiotensin II Receptor Blockers and Angiotensin-Converting Enzyme Inhibitors on COVID-19-Related Outcome. *SSRN Electronic Journal* 2020. - 252. Li J, Guo T, Dong D, et al. Defining heart disease risk for death in COVID-19 infection. *QJM: An International Journal of Medicine* 2020. - 253. Li Q, Chen L, Li Q, et al. Cancer increases risk of in-hospital death from COVID-19 in persons <65 years and those not in complete remission. *Leukemia* 2020; **34**(9): 2384-91. - 254. Meng Y, Lu W, Guo E, et al. Cancer history is an independent risk factor for mortality in hospitalized COVID-19 patients: a propensity score-matched analysis. *Journal of Hematology & Oncology* 2020; **13**(1): 75. - 255. Moon S-S, Lee K, Park J, Yun S, Lee YS, Lee DS. Clinical Characteristics and Mortality Predictors of COVID-19 Patients Hospitalized at Nationally-Designated Treatment Hospitals. *J Korean Med Sci* 2020; **35**(36). - Shang Y, Liu T, Wei Y, et al. Scoring systems for predicting mortality for severe patients with COVID-19. *EClinicalMedicine* 2020; **24**: 100426. - 257. Shi Q, Zhang X, Jiang F, et al. Clinical Characteristics and Risk Factors for Mortality of COVID-19 Patients With Diabetes in Wuhan, China: A Two-Center, Retrospective Study. *Diabetes care* 2020; **43**(7): 1382-91. - 258. Shi S, Qin M, Shen B, et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. *JAMA Cardiology* 2020. - 259. Sun H, Ning R, Tao Y, et al. Risk Factors for Mortality in 244 Older Adults With COVID-19 in Wuhan, China: A Retrospective Study. *Journal of the American Geriatrics Society* 2020; **68**(6): E19-e23. - 260. Sy KTL, Haw NJL, Uy J. Previous and active tuberculosis increases risk of death and prolongs recovery in patients with COVID-19. *Infectious diseases (London, England)* 2020; **52**(12): 902-7. - 261. Tai S, Tang J, Yu B, et al. Association between Cardiovascular Burden and Requirement of Intensive Care among Patients with Mild COVID-19. *Cardiovascular Therapeutics* 2020; **2020**: 9059562. - Wang D, Yin Y, Hu C, et al. Clinical course and outcome of 107 patients infected with the novel coronavirus, SARS-CoV-2, discharged from two hospitals in Wuhan, China. *Critical care (London, England)* 2020; **24**(1): 188. - 263. Wang K, Zuo P, Liu Y, et al. Clinical and Laboratory Predictors of In-hospital Mortality in Patients With Coronavirus Disease-2019: A Cohort Study in Wuhan, China. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America* 2020; **71**(16): 2079-88. - 264. Wang L, He W, Yu X, et al. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. *The Journal of infection* 2020; **80**(6): 639-45. - 265. Xie J, Covassin N, Fan Z, et al. Association Between Hypoxemia and Mortality in Patients With COVID-19. *Mayo Clinic Proceedings* 2020; **95**(6): 1138-47. - 266. Xu J, Yang X, Yang L, et al. Clinical course and predictors of 60-day mortality in 239 critically ill patients with COVID-19: a multicenter retrospective study from Wuhan, China. *Critical care (London, England)* 2020; **24**(1): 394. - 267. Yan Y, Yang Y, Wang F, et al. Clinical characteristics and outcomes of patients with severe covid-19 with diabetes. *BMJ Open Diabetes Research & Amp; Care* 2020; **8**(1): e001343. - Yang Q, Zhou Y, Wang X, et al. Effect of hypertension on outcomes of adult inpatients with COVID-19 in Wuhan, China: a propensity score-matching analysis. *Respir Res* 2020; **21**(1): 172. - 269. Yu C, Lei Q, Li W, et al. Clinical Characteristics, Associated Factors, and Predicting COVID-19 Mortality Risk: A Retrospective Study in Wuhan, China. *Am J Prev Med* 2020; **59**(2): 168-75. - 270. Zhang F, Xiong Y, Wei Y, et al. Obesity predisposes to the risk of higher mortality in young COVID-19 patients. *Journal of medical virology* 2020. - 271. Zhang H, Wang L, Chen Y, et al. Outcomes of novel coronavirus disease 2019 (COVID-19) infection in 107 patients with cancer from Wuhan, China. *Cancer* 2020; **126**. - 272. Zhang P, Zhu L, Cai J, et al. Association of Inpatient Use of Angiotensin Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers with Mortality Among Patients With Hypertension Hospitalized With COVID-19. *Circulation research* 2020. - 273. Zhang X, Guo W, Hua J, et al. The Incidence, Risk Factors and Clinical Outcomes of Acute Kidney Injury in Critically Ill Patients with COVID-19: A Multicenter Study. *SSRN* 2020. - Zhang Y, Cui Y, Shen M, et al. Association of diabetes mellitus with disease severity and prognosis in COVID-19: A retrospective cohort study. *Diabetes research and clinical practice* 2020; **165**: 108227-. - 275. Zhao M, Wang M, Zhang J, et al. Comparison of clinical characteristics and outcomes of patients with coronavirus disease 2019 at different ages. *Aging* 2020; **12**(11): 10070-86. - 276. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. *The Lancet* 2020; **395**(10229): 1054-62. - 277. Zhu L, She Z-G, Cheng X, et al. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. *Cell Metabolism* 2020; **31**(6): 1068-77.e3. - 278. Garassino M, Whisenant J, Huang L-C, et al. COVID-19 in patients with thoracic malignancies (TERAVOLT): first results of an international, registry-based, cohort study. *The Lancet Oncology* 2020; **21**. - 279. Kuderer N, Choueiri T, Shah D, et al. Clinical impact of COVID-19 on patients with cancer (CCC19): a cohort study. *The Lancet* 2020; **395**. - 280. Mato AR, Roeker LE, Lamanna N, et al. Outcomes of COVID-19 in patients with CLL: a multicenter international experience. *Blood* 2020; **136**(10): 1134-43. - 281. Atkins JL, Masoli JAH, Delgado J, et al. Preexisting Comorbidities Predicting COVID-19 and Mortality in the UK Biobank Community Cohort. *The Journals of Gerontology: Series A* 2020; **75**(11): 2224-30. - 282. Bhaskaran K, Rentsch C, MacKenna B, et al. HIV infection and COVID-19 death: population-based cohort analysis of UK primary care data and linked national death registrations within the OpenSAFELY platform. *medRxiv* 2020: 2020.08.07.20169490. - 283. Del Amo J, Polo R, Moreno S, et al. Incidence and Severity of COVID-19 in HIV-Positive Persons Receiving Antiretroviral Therapy: A Cohort Study. *Annals of internal medicine* 2020; **173**(7): 536-41. - 284. Hamer M, Gale CR, Kivimäki M, Batty GD. Overweight, obesity, and risk of hospitalization for COVID-19: A community-based cohort study of adults in the United Kingdom. *Proceedings of the National Academy of Sciences* 2020: 202011086. - 285. Hamer M, Kivimäki M, Gale CR, Batty GD. Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: A community-based cohort study of 387,109 adults in UK. *Brain Behav Immun* 2020; **87**: 184-7. - 286. Khawaja AP, Warwick AN, Hysi PG, et al. Associations with covid-19 hospitalisation amongst 406,793 adults: the UK Biobank prospective cohort study. *medRxiv* 2020: 2020.05.06.20092957. - 287. Lassale C, Gaye B, Hamer M, Gale CR, Batty GD. Ethnic disparities in hospitalisation for COVID-19 in England: The role of socioeconomic factors, mental health, and inflammatory and pro-inflammatory factors in a community-based cohort study. *Brain Behav Immun* 2020; **88**: 44-9. - 288. Patel AP, Paranjpe MD, Kathiresan NP, Rivas MA, Khera AV. Race, Socioeconomic Deprivation, and Hospitalization for COVID-19 in English participants of a National Biobank. *medRxiv* 2020:
2020.04.27.20082107. - 289. Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using OpenSAFELY. *Nature* 2020; **584**(7821): 430-6. - 290. Gu T, Mack JA, Salvatore M, et al. Characteristics Associated With Racial/Ethnic Disparities in COVID-19 Outcomes in an Academic Health Care System. *JAMA Netw Open* 2020; **3**(10): e2025197-e.